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Cover: Graph showing net decreases in U.S. gross domestic product (GDP) and median probability of 
occurrence for the leading trade disruption scenario for 72 of the 84 mineral commodities examined. 
Refer to figure 2 on page 16 for more information.
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Abstract
The Secretary of the Interior, acting through the Director 

of the U.S. Geological Survey, is tasked by section 7002 
(“Mineral Security”) of title VII (“Critical Minerals”) of the 
Energy Act of 2020 (Public Law 116–260, December 27, 
2020, 116th Congress) with reviewing and revising the 
methodology used to evaluate mineral commodity supply 
risk and the U.S. List of Critical Minerals (LCM) no less than 
every 3 years. Following two previous LCM assessments, this 
analysis represents the latest technical input for evaluating 
each mineral commodity’s supply risk and determining their 
recommended status on the LCM. We evaluated mineral 
commodity supply risk using two criteria: (1) an economic 
effects assessment that quantified the potential effects of 
various trade disruption scenarios on the U.S. economy, and 
(2) an examination of whether the mineral commodity’s 
U.S. supply chain relied on a sole domestic producer that 
represented a single point of failure. For the first criterion, 
postdisruption equilibrium quantities and prices for each 
mineral commodity were calculated based on their price 
elasticities of supply and demand and the availability of 
excess production capacity for each yearlong foreign trade 
disruption scenario. Subsequently, a nonlinear optimization 
routine was used with detailed economic input-output tables to 
estimate the potential economic effects on the U.S. economy 
of over 1,200 scenarios for 84 mineral commodities. After 
accounting for the probability of each scenario’s occurrence, 
the overall results are presented in terms of changes in U.S. 
gross domestic product (GDP) by individual industry and 
the economy overall. The results, which ranged from a net 
decrease in U.S. GDP of nearly $4.5 billion to a net increase of 
$33 million, largely reflect U.S. import dependency and world 
production concentration. Using the Jenks natural breaks 
optimization method, a statistical classification technique, we 

1U.S. Geological Survey.

2Akima Systems Engineering, under contract to the U.S. Geological Survey.

categorized the mineral commodities into several classes based 
on this overall risk quantification. Mineral commodities with 
annualized probability-weighted net decreases in U.S. GDP 
greater than $2 million were recommended for inclusion on 
the LCM. If a mineral commodity did not meet the threshold 
for inclusion on the LCM under the first criterion, its domestic 
supply chain was examined under the second criterion, which 
recommended a mineral commodity for inclusion on the LCM 
if there was only a single domestic producer. Ultimately, the 
two criteria resulted in the recommendation of the addition 
of six mineral commodities (in descending risk order, potash, 
silicon, copper, silver, rhenium, and lead) to and the removal 
of two mineral commodities (arsenic and tellurium) from the 
LCM. By using an economic effects assessment, the results of 
this analysis provide a prioritization that can also be compared 
directly against other risk analyses and the cost of various risk 
mitigation strategies.

Plain Language Summary
To quantify the risks associated with potential disruptions 

and to recommend mineral commodities for inclusion on the 
updated U.S. List of Critical Minerals, as required by the 
Energy Act of 2020, the U.S. Geological Survey developed 
an economic model to estimate the potential effects of 
foreign trade disruptions of mineral commodities on the U.S. 
economy. The results of the study recommend the addition 
of six mineral commodities (in descending risk order, potash, 
silicon, copper, silver, rhenium, and lead) to and the removal 
of two mineral commodities (arsenic and tellurium) from 
the List of Critical Minerals. The analysis also provides a 
prioritization based on the results. The economic model has 
several advantages over previous assessments including the 
ability to directly compare the results against other economic 
risks and the costs of initiatives aimed at reducing the risks.
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Introduction
Reliable supplies of mineral commodities, which are used 

in a myriad of technologies—old and new—are necessary for 
maintaining and growing the U.S. economy. The concentration 
of mineral commodity production in a few countries and the 
high degree of reliance of the United States on imports from 
these countries increases the risks associated with foreign 
supply disruptions (Nassar and others, 2020). These risks 
have been exemplified in recent months as the Ministry of 
Commerce of the People’s Republic of China (MOFCOM) 
has placed controls and outright bans on the exports of several 
mineral commodities including antimony, gallium, and 
germanium to the United States (Ministry of Commerce of the 
People’s Republic of China, 2024).

The Secretary of the Interior, acting through the Director 
of the U.S. Geological Survey, is tasked by section 7002 
(“Mineral Security”) of title VII (“Critical Minerals”) of the 
Energy Act of 2020 (Public Law 116–260, December 27, 
2020, 116th Congress) with reviewing and revising the 
methodology used to evaluate mineral commodity supply 
risk and the U.S. List of Critical Minerals (LCM) no less 
than every 3 years. In fulfilling part of the requirements 
of the Energy Act of 2020, the U.S. Geological Survey 
(USGS) provides the technical input for identifying mineral 
commodities whose supply disruption poses the greatest risk 
to the U.S. economy and national security. The Energy Act 
of 2020 defines “critical minerals” as the minerals, elements, 
substances, or materials that “(i) are essential to the economic 
or national security of the United States; (ii) the supply chain 
of which is vulnerable to disruptions (including restrictions 
associated with foreign political risk, abrupt demand 
growth, military conflict, violent unrest, anti-competitive 
or protectionist behaviors, and other risks throughout the 
supply chain); and (iii) serve an essential function in the 
manufacturing of a product (including energy technology-, 
defense-, currency-, agriculture-, consumer electronics-, 
and healthcare-related applications), the absence of which 
would have significant consequences for the economic or 
national security of the United States” (Public Law 116–260, 
section 7002(c)(4)(A)). The Energy Act of 2020 followed 
Executive Order 13817, “A Federal Strategy To Ensure 
Secure and Reliable Supplies of Critical Minerals” (3 CFR, 
2017 Comp, p. 397–399), which tasked the Secretary of the 
Interior with submitting to the Federal Register a draft list 
of minerals determined to be critical. The methodology used 
in the first List of Critical Minerals (LCM) in 2018 involved 
two quantitative criteria (the concentration of global mineral 
commodity production and U.S. net import reliance) and a 
qualitative examination of the importance of each mineral 
commodity’s use (Fortier and others, 2018). After the 
passage of the Energy Act of 2020, a new methodology that 
provided several enhancements to the original approach was 
used in determining the second LCM in 2022 (Nassar and 
Fortier, 2021). Using a risk modeling framework, the second 
assessment retained the U.S. net import reliance indicator 

and weighted the previous global production concentration 
indicator by measures of each producing country’s willingness 
and ability to continue to supply the United States. In addition, 
it converted the qualitative examination of each mineral 
commodity’s importance into a quantitative assessment 
using data on each mineral commodity consuming industry’s 
contributions to U.S. gross domestic product (GDP) and gross 
operating surplus. It also added a criterion for including any 
mineral commodity on the LCM if there was only a single 
domestic producer, which represented a potential single point 
of failure (SPOF) within the mineral commodity’s domestic 
supply chain.

The analysis presented in this report takes another 
major step forward in assessing the risk associated with 
foreign trade disruptions. While the analysis presented here 
retains the same conceptual framework as the previous 
assessments, it moves away from normalized indicators and 
toward an economic effects assessment. In this approach, the 
risks associated with foreign trade disruptions are assessed 
probabilistically, and the results are provided in terms of 
expected (or probability-weighted) net decreases in U.S. GDP 
at the level of individual industries and the economy overall. 
Our analysis, which was conducted using data for year 2023 
(unless otherwise noted), assessed over 1,200 scenarios for 
84 mineral commodities.

Methods
We used two criteria in recommending a mineral 

commodity for inclusion on the LCM. One criterion assessed 
the potential economic effects of foreign trade disruptions 
on the U.S. economy. The other criterion evaluated whether 
there was a single producer of that mineral commodity (for 
example, a sole mine or refinery) in the United States (referred 
to as a SPOF). The methodology used to estimate the potential 
economic effects was primarily based on Nassar and others 
(2024) and consists of three stages: scenario quantification, 
equilibrium displacement modeling, and economic impacts 
modeling. These three stages of the economic effects 
assessment are discussed in detail below. If a mineral 
commodity did not meet the first criterion, its domestic supply 
chain was reviewed using the information presented in the 
USGS Mineral Commodity Summaries (U.S. Geological 
Survey, 2025a) to determine if there was a SPOF within its 
domestic supply chain.

Stages of the Economic Effects Assessment

Scenario Quantification
The first stage of the economic effects assessment defined 

a specific set of scenarios. These scenarios were ones in which 
U.S. net imports (imports minus exports) for the mineral 
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commodity of concern from each trading partner country 
were completely restricted for an entire year. A scenario 
was thus developed for each mineral commodity–restricting 
country pair if that country was also a producer of the mineral 
commodity. Any positive U.S. net imports for that mineral 
commodity (when summed across all forms included in the 
analysis) from non-producing countries were allocated to 
producing countries proportionally to their share of world 
production. This step was added to account for the fact that 
positive net imports from non-producing countries must have, 
at some point, originated from producing countries.

For each mineral commodity, annualized country-level 
global production and trade data were collected by production 
stage (for example, mining) or mineral-commodity form (for 
example, ores and concentrates). Data availability allowed for 
the assessment of 84 mineral commodities. Of these 84, 31 
represent different stages or forms of 11 mineral commodity 
supply chains: aluminum (alumina, aluminum, and bauxite), 
chromium (chemicals, chromite, ferroalloys, and metal), 
cobalt (chemicals and metal), copper (mined and refined), 
graphite (natural and synthetic), fluorspar (acidspar and 
metspar), manganese (alloys, dioxide, high-purity sulfate, 
metal, ore), nickel (mined and primary refined), silicon 
(ferroalloys and metal), titanium (ferroalloys, metal, mineral 
concentrates, pigment, and sponge), and zinc (mined and 
smelted). Magnesium compounds and magnesium metal 
were treated as separate mineral commodity supply chains 
given their distinct sources and uses. Mineral production data 
included primary production and, if applicable and available, 
secondary (specifically, end-of-life or post-consumer 
recycling) production by country. Production data were 
mainly obtained from the most recent USGS publications, 
although other sources were used where necessary (refer to 
appendix 1 of Nassar and others [2025] for details). For a few 
mineral commodities, secondary production data were only 
available by region or for the entire world. In cases where 
it was not possible to allocate these secondary production 
data to individual countries, the reported regional production 
quantities were treated as if they were a single entity in 
the scenario.

Global trade data were obtained from the Global Trade 
Tracker database (Zen Innovations AG, 2025) using the 
Harmonized Tariff Schedule of the United States (HTS) and 
Schedule B codes identified in appendix 2 of Nassar and others 
(2025) for the imports and exports of each mineral commodity, 
respectively. The trade data were obtained from the U.S. 
perspective (meaning as reported by the United States) unless 
the trade data from the trade partner country’s perspective 
were determined to be more representative for the mineral 
commodity (refer to appendix 2 of Nassar and others [2025] 
for details). Production and trade data were converted into 
elemental content (for example, the antimony content of 
antimony trioxide) to allow for summation across different 
chemical forms and were calculated net of any reimports or 
reexports (meaning that trade flows were calculated exclusive 
of the flows of commodities that were previously recorded 

as exports or imports, respectively, in substantiality the same 
condition) (International Trade Administration, 2015). Trade 
codes were selected to reflect the chemical forms (typically 
alloys, compounds, concentrates, metals, ore, and scrap) 
that were produced by the associated production processes 
up to the supply chain process associated with the identified 
consuming industries (as explained in the “Economic Impacts 
Modeling” section of this report). Additional notes and 
assumptions are provided in appendixes 1 and 2 of Nassar and 
others (2025) for production and trade data, respectively.

Equilibrium Displacement Modeling
In the second stage of the economic effects assessment, 

the production and trade data were allocated to two regions or 
markets—the restricting country and the rest of the world—
that varied by scenario. The quantity that was disrupted (∆Q) 
in each scenario (s) for each mineral commodity (c) was set 
equal to the U.S. net imports from the restricting country 
(NI) for the year. A postdisruption equilibrium price (P′) and 
quantity (Q′) for the rest of the world were determined based 
on (1) the quantity disrupted, (2) excess production capacity 
of the mineral commodity in the rest of the world (κROW), (3) 
the mineral commodity’s price elasticities of supply (εS) and 
demand (εD), and (4) the predisruption quantity of the mineral 
commodity available (Q). Specifically, the postdisruption 
equilibrium price relative to the predisruption price (P) was 
determined as follows:

n
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where n was the relative shift in quantity available (
∆Q
Q ). The 

predisruption quantity of the mineral commodity available (Q) 
was defined as the sum of the predisruption quantity that was 
produced by the rest of the world (ψROW) and the net imports 
from the restricting country (NI):

n
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This approach defined the system boundaries of the 
mineral commodity market that would be available to the 
United States, which varied by scenario because the definition 
(and, in turn, the net imports and production) of the rest of the 
world varied depending on which country was the restricting 
country. A scenario in which the restricting country was the 
sole producer of the mineral commodity would yield a relative 
shift in quantity available (n) of 100 percent. (Note that no 
such scenario was encountered in this analysis.) Establishing 
the system boundaries in this manner implicitly assumes 
that the mineral commodity produced by the non-restricting 
countries would be available and thus could be diverted to 
the United States. It also assumes that the restricting country 
applies its export restrictions extraterritorially, meaning that its 
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exports to countries other than the United States are prohibited 
from being reexported to the United States. This assumption 
would also apply to downstream materials (for example, rare 
earth permanent magnets) that were included in the trade 
data, thereby effectively prohibiting non-restricting countries 
from exporting materials that they processed if the precursor 
materials were originally sourced from the restricting country.

Postdisruption equilibrium prices were determined 
numerically by setting equation 1 equal to equation 2. With 
the postdisruption equilibrium price, the relative change in the 
postdisruption equilibrium quantity, also referred to as the net 
disruption level (n′), was determined as follows:
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If the specified scenario resulted in a supply disruption greater 
than the available excess capacity in the rest of the world 
(κROW), then equation 3 simplified to:

� � �n n
Qs c s c
s c
ROW

s c
, ,

,

,

�
�

.� (4)

This simplification was possible because the supply 
curve was assumed to become vertical at the point in which 
all excess capacity was used—a reflection of the inability 
to increase supplies in the short-term beyond the estimated 
capacities. Under such scenarios, the demand curve intercepts 
the vertical portion of the supply curve thereby allowing the 
postdisruption equilibrium price to be calculated directly:

	 � � � �� �P P ns c c s c c
D

, ,
1

1

� .� (5)

The growth in the production of the rest of the world 
( �� ROW ) that was necessary to achieve the postdisruption 
equilibrium quantity was calculated as follows:

	 � �� s c
ROW

s c s c s cQ n Q, , , ,� � � .� (6)

The derivations of these equations are provided by Nassar and 
others (2024).

Following Shojaeddini and others (in press), each 
mineral commodity’s price elasticities of supply and demand 
were estimated using fixed effects models for panel data 
and two-stage dynamic ordinary least-squares along with 
autoregressive distributed lag models for time-series data 
(refer to appendix 3 of Nassar and others [2025] for a 
summary of the elasticities used in the analysis). Where 
possible, short-run (1-year) price elasticities were used, 
and price elasticities of demand were estimated to include 
inventory releases as a demand category.

Data on production capacity by country were obtained 
from published sources (refer to appendix 1 of Nassar and 
others [2025]) or, if not available, were estimated for each 
producing country based on historical production. Specifically, 
for the latter, production capacity for each currently producing 
country was assumed to equal its maximum production that 
was reported during the preceding 5-year period (2019–2023) 
divided by 80 percent to simulate an assumed capacity 
utilization rate. Additionally, a linear ramp-up time of 
6 months was assumed to be required to reach the reported or 
estimated production capacity by country.

Economic Impacts Modeling
Three intermediate results for each scenario were 

obtained from the equilibrium displacement modeling (stage 
2 of the economic effects assessment): the postdisruption 
equilibrium price, quantity, and the growth in production 
for the rest of the world. In the third stage of the economic 
effects assessment—the economic impacts modeling—these 
results were used with detailed economic input-output (IO) 
tables for the United States in a nonlinear optimization routine 
to estimate the potential effects of the scenarios on the U.S. 
economy (specifically, net decreases in U.S. GDP by industry). 
The intuition behind the model is that, in the event of a 
supply disruption, economic actors (be they final consumers, 
industries, or governments) will attempt to reestablish their 
economic activity patterns as closely as possible to their 
predisruption levels (Oosterhaven and Bouwmeester, 2016). 
As described by Nassar and others (2024), the objective 
function of the optimization model therefore attempted 
to minimize the change between the predisruption and 
postdisruption interindustry intermediate demand, final 
demand, and value added across all industries, as follows:

Minimi
ij ij ij i i i i i iz z y y v v

2 2 2� (7)

where
	 z and z′	 were the predisruption and postdisruption 

interindustry intermediate demand, 
respectively;

	 y and y′	 were the predisruption and postdisruption 
final demand, respectively;

	 v and v′	 were the predisruption and postdisruption 
value added, respectively; and

	 i, j	 were subscripts that indicate individual 
industries.
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The decision variables in the model were each industry’s 
postdisruption output (x′). Each industry’s postdisruption 
final demand (y′) was determined using the Leontief equation 
(Leontief, 1951), which provided the overall supply and 
demand equilibrium for the U.S. economy:

	 y′ = (I – A) x′,� (8)

where I was the identity matrix and A was the 
industry-by-industry direct requirements matrix. Additionally, 
values for individual postdisruption interindustry 
intermediate demand (z′), were calculated using the direct 
requirements matrix:

	 z′ = A x′.� (9)

Data for each of the predisruption parameters of 
equations 7, 8, and 9 (all reported in current [2023] U.S. 
dollars) were available for the United States from the 
U.S. Bureau of Economic Analysis (BEA) at the detailed 
402-industry level for years 2007, 2012, and 2017 (U.S. 
Bureau of Economic Analysis, 2025). The BEA industry 
groupings generally correspond to the definitions of the North 
American Industry Classification System (NAICS), which was 
developed under the auspices of the Office of Management 
and Budget to coordinate and publish industry data by Federal 
statistical agencies (U.S. Census Bureau, 2024). At the 
detailed level, an industry consists of establishments that are 
primarily engaged in similar processes to produce a narrowly 
defined category of products or services (for example, 
the “Computer storage device manufacturing” industry 
with NAICS code 334112). Multiple industries make up a 
subsector (for example, the “Computer and electronic product 
manufacturing [334]” subsector), which itself falls within a 
specific sector (for example, the “Manufacturing [31–33]” 
sector) of the economy (Office of Management and Budget, 
2022). The BEA publishes updates to the IO tables annually 
but only at aggregated levels (U.S. Bureau of Economic 
Analysis, 2025). These aggregated data are based on estimated 
detailed IO tables, which were provided to the authors (U.S. 
Bureau of Economic Analysis, written comm., October 31, 
2024). The most recent data provided (for year 2023) were 
used in this analysis.

The optimization routine was subjected to several 
constraints, including a mineral commodity availability 
constraint:

	 i i c s ci s cm Mx� �� � � �, ,, , .� (10)

This constraint specified that the total quantity of the 
mineral commodity used by industries in the United States—
calculated as the product of each consuming industry’s output 
and its mineral consumption ratio (m), summed across all 

industries—must equal the total postdisruption quantity of the 
mineral commodity (M′) that was available under the specified 
disruption scenario. The quantity of the mineral commodity 
that was available after the supply disruption was based on the 
predisruption quantity consumed in the United States (M) and 
the net disruption level (n′) that was derived in equilibrium 
displacement modeling:

	 M′s,c = (1 – n′s,c) Mc.� (11)

The implicit assumption here is that the quantity that 
would be available for consumption in the United States 
decreases in the same relative proportion as that of the rest of 
the world (outside of the restricting country).

For each mineral commodity, the predisruption quantity 
that was consumed in the United States was calculated as 
the sum of domestic primary and secondary production, 
net imports, and changes in inventories. Data for each of 
these were obtained from the same sources as those listed 
in appendixes 1 and 2 of Nassar and others (2025), with 
additional data for inventories obtained from the latest USGS 
Mineral Commodity Summaries (U.S. Geological Survey, 
2025a) where applicable. The calculated or “apparent” 
consumption quantity was split into specific applications 
that were linked to individual industries. For example, the 
use of barite to increase the density of drilling mud in the 
petroleum industry was connected to the “Drilling oil and 
gas wells [213111]” BEA industry. As much as possible, we 
aligned the trade codes used in the equilibrium displacement 
model to the forms of the mineral commodities that would 
be purchased by (or the supply chain processes that directly 
precede) the selected BEA consuming industries. In certain 
cases, connections were made further downstream if the 
direct consuming industries were determined to be too broad 
to reasonably capture the use of the mineral commodity 
in the application. For example, cobalt metal’s use in 
high-performance “superalloys” was connected downstream to 
the “Aircraft engine and engine parts manufacturing [336412]” 
and the “Turbine and turbine generator set units manufacturing 
[333611]” industries rather than the “Iron and steel mills and 
ferroalloy manufacturing [331110]” industry. Details regarding 
the application fractions and the BEA industry connections are 
provided in appendix 4 of Nassar and others (2025).

The monetary value of the trade of the mineral 
commodity was added to the value of domestic production 
and inventory releases to provide an estimate for the value of 
the apparent consumption. The monetary value of domestic 
production and inventory releases was calculated as the 
product of the quantities produced and released and the price 
noted in appendix 3 of Nassar and others (2025) for each 
mineral commodity. In turn, an apparent consumption unit 
value was calculated as the ratio of the monetary value to the 
quantity of the calculated apparent consumption.
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Even at the detailed 402-industry level, not all the 
output of each identified BEA industry uses the mineral 
commodity in question. For example, not all of the output of 
the “Drilling oil and gas wells [213111]” industry uses barite, 
and not all of the output of the “Semiconductor and related 
device manufacturing [334413]” industry uses gallium or 
germanium. To address this issue, Nassar and others (2024) 
used modified mineral consumption ratios that account for 
the portion of each BEA industry’s output that used the 
mineral commodity in question. In this analysis, we instead 
performed a streamlined IO table expansion. Specifically, each 
consuming BEA industry was split into two industries: one 
that consumes the mineral commodity and the other that does 
not. Because IO table expansion requires extensive additional 
data regarding the newly formed industries’ inputs from and 
outputs to all other industries and final demand (data which 
were not readily available), simplifications were required. 
One simplification was that the newly formed industries had 
the same relative production recipe (in terms of monetary 
inputs per unit of output) as the original industry from which 
they were disaggregated. This meant that the columns of 
the direct requirements table for the two new industries 
were unchanged from the original. The other simplification 
was that the newly formed industries’ outputs to the other 
industries and to final demand were all split using the same 
proportion, which was based on the share of the original 
industry’s output that was estimated to have used the mineral 
commodity in question. These proportions, by industry and 
mineral commodity, were estimated mainly using data on the 
revenues generated from the sales of specific product(s) as 
defined by the North American Product Classification System 
(NAPCS) and reported in the 2017 Economic Census (U.S. 
Census Bureau, 2020) and the 2018–2021 Annual Survey of 
Manufactures (U.S. Census Bureau, 2022). Other sources and 
methods were used where the NAPCS data did not provide 
sufficient disaggregation for the mineral commodity. Details 
are provided in appendix 4 of Nassar and others (2025). Note 
that the newly formed industries were remerged after running 
the optimization routine in order to report the results across a 
consistent set of 402 industries. With expanded IO tables, the 
mineral consumption ratio was calculated as the ratio of the 
quantity of the mineral commodity consumed by that industry 
relative to that industry’s output in U.S. dollars.

Another constraint used in the model was an industry 
production capacity constraint, which required each industry’s 
output to maintain a positive value that does not exceed that of 
its capacity (xc):

	 x x x
ui s c i

c i

i
, , .� (12)

Each industry’s output capacity was calculated by 
dividing its predisruption output by its capacity utilization 
rate, u. Data regarding annual capacity utilization rates for 
industries within the manufacturing, mining, and electric and 
gas utilities sectors of the United States were obtained from 

the Board of Governors of the Federal Reserve System (2024). 
As explained by Nassar and others (2024), these data were 
available at the 3-digit or 4-digit NAICS subsector level or 
equivalent, whereas the BEA IO tables were reported at the 4-, 
5-, or 6-digit NAICS level equivalent. The capacity utilization 
data at the 3- and 4-digit levels were thus applied to the most 
appropriate level or sublevel, accordingly. For the remaining 
industries outside of the manufacturing, mining, and electric 
and gas utilities sectors, the capacity utilization rate was set to 
80 percent, which was approximately the average utilization 
rate across all sectors with capacity utilization data in 2023 
(Board of Governors of the Federal Reserve System, 2024).

Each consuming industry’s postdisruption value added 
(its postdisruption contribution to U.S. GDP) was calculated 
as follows:

	 � � � �� � �� �v x P xv
x

P mi s c i s c s c i s c
i

i
c i c, , , , , , , ,� .� (13)

Changes to an industry’s value added were thus due 
to changes in both its output and its expenditure on the 
mineral commodity, with the latter being determined by 
changes in the mineral commodity’s price and the quantity 
consumed postdisruption. Although the changes in the mineral 
commodity’s price were determined in the equilibrium 
displacement model, changes in the quantity of the mineral 
commodity consumed were determined endogenously within 
the economic impacts model as it was a function of the 
consuming industry’s postdisruption output.

Because the demand curve for each mineral commodity 
was estimated using a single price elasticity, it was necessary 
to introduce a price maximum for mineral commodities with 
highly inelastic demand under scenarios in which the quantity 
restricted was large enough that all excess production capacity 
in the rest of the world was used (in other words, where a 
nearly vertical demand curve intersected the vertical portion 
of the supply curve). The price maximum (Pmax) was based on 
the maximum willingness to pay for each consuming industry, 
which was assumed to take place when an industry’s entire 
value added was reduced to zero owing to the price increase 
of the mineral commodity consumed. The price maximum 
for each industry was therefore determined by setting 
equation 13 to zero:

	 P v
x m

Pc i
max i

i i c
c,

,

� � .� (14)

An overall price maximum for each mineral commodity 
was determined to be the largest of the calculated industry 
price maximums that achieved market clearing based on 
the mineral availability constraint. This price maximum 
was ultimately only necessary for four mineral commodity 
scenarios: trade disruption from China of lutetium, samarium, 
thulium, and ytterbium.
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The postdisruption value added for producing industries 
was calculated in a similar manner to that of consuming 
industries except that the price effect increased rather than 
decreased the industry’s value added, and a mineral production 
ratio (r) was used instead of a mineral consumption ratio:

	 � � �� � � �� �v x xv
x

P P ri s c i s c i s c
i

i
s c c i c, , , , , ,, ,� .� (15)

Like the mineral consumption ratio, the mineral 
production ratio was calculated as the ratio of the 
predisruption mineral production quantity of that industry to 
its output in U.S. dollars. As with mineral consuming BEA 
industries, each mineral producing BEA industry (identified 
in appendix 1 of Nassar and others, 2025) was split into two 
industries: one that was directly associated with the mineral 
commodity’s production and the other that represented the 
remainder of the BEA industry. The monetary value of the 
production of the mineral commodity as a percent of the 
industry’s output was the basis for splitting the mineral 
commodity producing BEA industries. Note that the 
predisruption price used for domestic production (noted in 
appendix 3 of Nassar and others, 2025), which was used for 
splitting the BEA producing industries and calculating the 
value added of producing industries in equation 15, was not 
necessarily the same as the predisruption consumption price 
used in splitting the consuming BEA industries and calculating 
the value added of consuming industries in equation 13. 
This price difference reflects the fact that the predisruption 
domestic consumption prices were based on the unit value 
of domestic apparent consumption, which accounted for the 
value and quantity of not only domestic production but also 
net imports. Differences in production and consumption prices 
were mainly a reflection of the differences in the commodity 
forms produced and consumed domestically. Although the 
predisruption consumption and production prices were 
different, they were both increased postdisruption at the same 
rate using the price ratio that was calculated in the equilibrium 
displacement model (or the calculated price maximum).

As with the mineral commodity availability constraint 
(eq. 10), a mineral commodity production constraint was 
included in the optimization routine to match the equilibrium 
displacement model results:

	 r xii s c
US s c

ROW

s c
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,

,

,
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As illustrated in equation 16, domestic production (ψUS) 
of the mineral commodity was assumed to grow at the same 
rate as the production of the rest of the world but was limited 
by the maximum reported or estimated capacity of production 
in the United States, κUS. This constraint only applied to 
mineral commodities for which the United States was a 
producer. Note that because of this growth in domestic mineral 

commodity production, it was necessary in certain scenarios 
to remove the industry output capacity constraint (xc

i) for the 
producing industries.

The postdisruption value added for all other industries 
(meaning those that were neither direct consumers nor 
producers of the mineral commodity in question) were 
calculated without the price effect term of equations 13 and 15:

	 � ��v xv
xi s c i s c
i

i
, , , ,� .� (17)

This approach assumed that direct consuming industries 
absorbed the entire price increase, with none of the price 
increase being passed on to downstream industries or final 
consumers. This assumption is not wholly realistic in all cases 
as many industries have the market power to pass through 
price increases, but it may be a reasonable assumption in 
the short term. These non-producing, non-direct consuming 
industries would thus be affected by the disruption indirectly 
through the IO tables and the objective function (eqs. 7–9), 
which seeks to minimize changes to not only each industry’s 
value added but also each interindustry intermediate and 
final demand.

Increases in prices of mineral commodities were 
accounted for only in the value added variable and not the 
other variables (industry output, final demand, or interindustry 
intermediate demand). This approach allowed the IO model to 
remain in price equilibrium for all other goods and services, 
while still accounting for the effect of mineral commodities’ 
price increases on U.S. GDP.

The overall economic effect, or net decrease in U.S. GDP, 
was calculated as the sum of the changes in value added across 
all industries for a single scenario:

	 �GDP v vs c i i s ci, , ,� � �� ��� .� (18)

Note that in equation 18, a net decrease in U.S. GDP is 
presented as a positive value.

Model Implementation

To solve the convex optimization problem at the core 
of the economic impacts model, we used the Clarabel solver 
(Goulart and Chen, 2024), an interior-point method designed 
for second-order cone and quadratic programming. Clarabel 
was written in the Rust programming language and integrated 
through Python via CVXPY (2025), allowing for both speed 
and ease of embedding in high-level modeling workflows. 
Unlike some legacy solvers, it offers better handling of 
problem scaling and numerical precision, which can be 
especially important for economic applications involving 
large IO models. For model implementation, we used Python 
version 3.11.8 (Python Software Foundation, 2024), along 
with CVXPY version 1.6.5. Additional details are provided in 
appendix 5 of Nassar and others (2025).
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For each scenario, results included the postdisruption 
values for each industry’s output, interindustry intermediate 
demand, final demand, and value added. As noted earlier, 
the results for the newly formed industries were remerged 
after running the optimization routine in order to report the 
results across a consistent set of 402 industries. Additionally, 
net decreases in U.S. GDP were grouped into one of the 
following economic effects components: consuming industries 
reducing their output, consuming industries paying higher 
prices, producing industries increasing their output, producing 
industries receiving higher prices, and all other industries 
reducing their output.

Scenario Probabilities

Because not all scenarios are equally likely to occur, we 
estimated a probability for the occurrence of each scenario. 
The probability of an export restriction was set to 100 percent 
for 17 scenarios that represent China’s trade disruptions of 
the mineral commodities (antimony, bismuth, dysprosium, 
gadolinium, gallium, germanium, natural graphite, synthetic 
graphite, indium, lutetium, magnesium metal, molybdenum, 
samarium, tellurium, terbium, tungsten, and yttrium) that 
China’s MOFCOM has (as of this writing) explicitly identified 
as being either restricted or completely banned from being 
exported to the United States (Ministry of Commerce of the 
People’s Republic of China, 2024, 2025a, b). For all other 
scenarios, the probability of a country implementing a trade 
restriction on a given mineral commodity was obtained 
using the method developed in Ryter and Nassar (2025). 
These probabilities were calculated using an ensemble of 
several machine learning classifiers, each of which produced 
a probability estimate for each mineral commodity–country 
scenario. Exogenous variables such as prior trade barrier 
implementation (specifically, trade prohibition, quota, or 
licensing requirements) and global export dominance or 
dependence were used to train each classifier and inform 
its probability estimates. The median of the probabilities 
for the mineral production process or trade codes that most 
closely aligned with those selected in this analysis were used. 
Probabilities were unavailable for a few mineral commodity–
country pairs. These pairs represent a small number (17 out of 
1,205 scenarios) of low economic impact (with net decreases 
in U.S. GDP averaging less than $2 million) scenarios. For 
completeness, these scenarios were assigned a probability 
equal to the mean probability of all scenarios assessed 
(4 percent).

With the probabilities (ρ) assigned to each scenario, 
the expected value or probability-weighted net decrease in 
U.S. GDP across all scenarios (E[∆GDP]) for each mineral 
commodity was determined, as follows:

	 E GDP GDP
c

s
s c s c, , .� (19)

Risk Categorization

A statistical approach was used to categorize 
the risk results. Specifically, the classification of the 
probability-weighted net decrease in U.S. GDP was conducted 
using the Jenks natural breaks optimization method (Jenks, 
1967), which aims to minimize variance within classes while 
maximizing variance between classes. This method provides 
optimized cutoff points based on the specified number of 
classes, allowing for differentiation between various economic 
effects. To determine the appropriate number of classes and 
avoid overfitting, the elbow method suggested by Satopaa and 
others (2011) was employed. Additional details are provided in 
appendix 6 of Nassar and others (2025).

Results and Discussion
With 84 mineral commodities, 402 industries, and over 

1,200 scenarios, the results of the analysis, which include 
changes in equilibrium prices and quantities, as well as 
changes in each industry’s output, interindustry intermediate 
demand, final demand, and contributions to U.S. GDP are too 
numerous to display and discuss in full in this report. Instead, 
below is a sampling of results for a single example mineral 
commodity, palladium (fig. 1), followed by a summary of the 
main result variable (the probability-weighted net decrease 
in U.S. GDP, which is presented as a positive value) for all 
mineral commodities by trade disruption scenario (table 1 and 
fig. 2), industry (table 2), and economic effects component 
(table 3). Palladium was selected as the example to present 
because it was one of only a few mineral commodities 
examined for which more than one trade disruption scenario 
contributed notably to its overall probability-weighted net 
decrease in U.S. GDP.

Results for Palladium

In figure 1A, the estimated supply and demand curves 
for palladium are displayed for a scenario in which U.S. net 
imports of palladium from Russia (a leading world producer 
and import source for the United States) were completely 
restricted for an entire year. The results indicate that the 
price would increase by 24 percent and the quantity available 
postdisruption would decrease by approximately 5 percent (the 
net disruption level, n′). This does not account for speculative 
(often temporary) price fluctuations in the cash market, but 
rather reflects the change in the modeled equilibrium price that 
would be expected from the supply shift. Excess production 
capacity in other producing countries, especially in South 
Africa, and inelastic demand were the main reasons that the 
net disruption level was not higher.

Displayed as a scatter plot, figure 1B illustrates the 
postdisruption prices and net disruption levels for all 
palladium scenarios (defined by the complete restriction of 
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U.S. net imports of palladium from nine producers from 
which the United States was a direct or indirect net importer: 
Belgium, India, Norway, Russia, Serbia, South Africa, South 
Korea, Uzbekistan, and Zimbabwe). The results for South 
African and Russian scenarios were of similar magnitude, 
which is to be expected given that both countries produced 
and net exported to the United States roughly the same amount 
of palladium in 2023. The availability of Russian palladium 
helped to mitigate the effects of a South African disruption 
just as the availability of South African palladium helped 
to mitigate the effects of a Russian disruption. A scenario in 
which South Africa and Russia disrupted palladium trade 
simultaneously was not modeled but would have undoubtedly 
resulted in a markedly higher disruption level and price 
given the lack of substantial production outside of these two 
countries. In contrast, disruption scenarios for Belgium and 
South Korea, both of which refined and recycled but did not 
mine palladium, resulted in markedly lower net disruption 
levels and price increases. These smaller decreases correspond 
to not only lower U.S. net imports from these countries but 
also a larger quantity of palladium available from other 
countries, mainly Russia and South Africa. The impacts 
from the remaining five scenarios (India, Norway, Serbia, 
Uzbekistan, and Zimbabwe) were even less pronounced, 
with extremely low net disruption levels and price increases, 
primarily due to their markedly smaller contributions to U.S. 
net imports of palladium and the availability of palladium 
from major producers like Russia and South Africa. Scenarios 
from other palladium producers (for example, Canada) were 
excluded from the analysis because the United States was a net 
exporter of palladium to those producers in 2023.

Results from the economic impacts modeling for 
all nine palladium scenarios by industry are displayed in 
figure 1C. Specifically, this part of the figure displays the 
modeled effects on U.S. GDP for 11 palladium-consuming 
industries that contributed the most to the decreases along 
with increases to U.S. GDP from 2 palladium-producing 
industries (mining and recycling) and an “all other industries” 
category that reflects the aggregate effect on the remaining 
389 industries, which includes several additional industries 
that were direct consumers of palladium. All changes in U.S. 
GDP are presented in current (2023) U.S. dollars. Scenarios 
of Russian and South African palladium trade disruptions 
resulted in the largest net decreases in U.S. GDP (displayed in 
the data labels of each scenario in figure 1C) of approximately 
$1 billion each, whereas the scenarios for Belgium and 
South Korea both resulted in net decreases of less than 
$100 million and those from the five other scenarios resulted 
in net decreases of $1 million or less. Although the specific 
industry contributions to the decreases varied by scenario, the 
industries that contributed the most overall were the “Light 
truck and utility vehicle manufacturing [336112]” industry, 
where palladium is used in catalytic converters; the “Fertilizer 
manufacturing [325310]” industry, where palladium is used 
as a catchment gauze in nitric acid production; and the “Other 
electronic components manufacturing [33441A]” industry, 

where palladium is used in multilayer ceramic capacitors. 
The other industries affected reflect palladium’s use in dental 
alloys, hybrid integrated circuits, jewelry, catalytic converters 
for other vehicle classes, and catalysts for other chemical 
industries. In these scenarios of foreign supply disruptions, 
palladium-producing industries (under BEA industry code 
2122A0 for mining and 331490 for recycling) garnered higher 
palladium prices and increased their palladium production, 
thereby increasing their positive contribution to U.S. GDP, 
which reduced the net effect of the trade disruptions on the 
economy overall.

Figure 1D displays the results of the economic impacts 
model for each scenario (horizontal axis) and the median 
probability of the scenario occurring (vertical axis) based on 
the analysis conducted by Ryter and Nassar (2025). In this 
variable-width column graph, the area of each scenario (the 
product of the median probability and the net decrease in U.S. 
GDP) represents the probability-weighted net decrease in 
U.S. GDP. Although the South African scenario resulted in the 
largest decrease of U.S. GDP (as also displayed in figure 1C), 
its probability of occurrence (approximately 3.9 percent) was 
slightly lower than of the Russian scenario (approximately 
4.1 percent). The probability of Russia restricting palladium 
supplies might seem low given recent geopolitical tensions 
but is attributable to the relative infrequency with which 
Russia imposes export restrictions on mineral commodities, 
which may be a reflection of their importance as a revenue 
source (Ryter and Nassar, 2025). Additionally, the scenarios 
do not account for any current or potential U.S.-imposed 
import sanctions. Nevertheless, the contribution of the Russian 
scenario (the product of the scenario’s impact and probability 
represented by the area of the scenario) to the overall 
probability-weighted net decrease in U.S. GDP was slightly 
smaller ($40.2 million) than that of the South African scenario 
($40.6 million). The contributions to the probability-weighted 
net decrease in U.S. GDP from the South Korean and Belgian 
scenarios were both lower. Although the other 5 scenarios are 
displayed in figure 1D, they are too small (on the horizontal 
axis) to be legible. The probability-weighted net decrease in 
U.S. GDP across all scenarios, the entirety of the shaded area 
of figure 1D, totaled approximately $85 million.

Results by Trade Disruption Scenario

A summary of the contributions to the 
probability-weighted net decrease in U.S. GDP for each 
mineral commodity by leading country contribution is 
provided in table 1. The results indicate that samarium has 
the largest overall probability-weighted net decrease in U.S. 
GDP of nearly $4.5 billion. This modeled economic impact 
comes almost entirely from the China disruption scenario, 
for which a probability of 100 percent was used because of 
the recent export restriction. Several of the other “middle” 
and “heavy” rare earth elements (that is, lutetium, terbium, 
dysprosium, gadolinium, and yttrium) were also determined 
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Figure 1.  Four graphs showing various results from modeling trade disruption scenarios (the restriction of U.S. net imports from 
producers from which the United States was a direct or indirect net importer) for palladium. A, estimated palladium supply and 
demand curves for the rest of the world under a trade disruption scenario in which U.S. net imports of palladium from Russia were 
completely restricted for an entire year. Demand remaining constant, the supply curve shifts postdisruption, causing the postdisruption 
price to increase and quantity to decrease. B, estimated postdisruption price increase and relative decrease in quantity available 
postdisruption under nine trade disruption scenarios for palladium (the restriction of U.S. net imports of palladium from nine producers 
from which the United States was a direct or indirect net importer: Belgium, India, Norway, Russia, Serbia, South Africa, South Korea, 
Uzbekistan, and Zimbabwe). C, net decreases in U.S. gross domestic product (GDP) by industry under nine trade disruption scenarios 
for palladium. Industries shown are those industries that had the highest contributions to the net decrease in U.S. GDP for palladium 
across the nine scenarios. Each industry is followed by a 6-character alphanumeric code from the U.S. Bureau of Economic Analysis 
in brackets. Values represent the effect for each scenario in current (2023) U.S. dollars, but not do reflect the probability of occurrence. 
Negative values indicate an increase in U.S. GDP by a given industry. Number to the right of each data bar is the net decrease (sum of 
positive decreases and negative increases) in U.S. GDP for the scenario. The scenarios are listed in descending order of net decrease. 
D, estimated median probability of scenario occurrence and net decreases in U.S. GDP for nine trade disruption scenarios for palladium. 
Five scenarios have net decreases too small to be legible on the figure. Probability-weighted net decreases in U.S. GDP (the product 
of the modeled net decrease for the scenario and its probability of occurrence) are represented as the area of each scenario with 
the value being displayed (in millions of U.S. dollars) below the country name for each scenario. The total area (across all scenarios) 
represents the overall probability-weighted net decrease in U.S. GDP for palladium. Scenarios are shown consecutively along the 
horizontal axis in descending order by the probability of the scenario occurring to show the relative contribution of the given scenarios 
to the overall probability-weighted net decrease in U.S. GDP. 
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Table 1.  Probability-weighted net decreases in U.S. gross domestic product (GDP), by scenario across all industries, and scenario contributing most to the probability-weighted net decrease in U.S. GDP for each mineral commodity.

[Mineral commodities are listed in order of overall probability-weighted net decrease in U.S. GDP. Scenarios shown are the disruption of U.S. net imports of the mineral commodities from 12 producers from which the United States was 
a direct or indirect net importer that resulted in the greatest probability-weighted net decrease in U.S. GDP across the mineral commodities examined: Australia, Belgium, Brazil, Canada, Chile, China, Germany, India, Malaysia, Mexico, 
Russia, South Africa. All other scenarios are aggregated under the “all other countries” column. Probability-weighted net decreases are the product of the net decrease in U.S. GDP of the scenario and its median probability of occurrence. 
Results are in current (2023) U.S. dollars and were rounded to the nearest million U.S. dollars; may not add to totals shown. Probability-weighted net decrease values are gradationally shaded between the 5th and 95th percentiles of the 
values in the table to visually highlight positive (orange) to negative (blue) values. For mineral commodities with an overall negative net decrease (meaning those with an overall net increase) in U.S. GDP, the scenario contributing the most 
to the net decrease is not displayed. %, percent; —, indicates that the scenario was not applicable for that mineral commodity]

Mineral commodity

Probability-weighted net decreases in U.S. GDP by scenario

(millions of U.S. dollars)

Scenario contributing most to probability-

weighted net decrease in U.S. GDP

Australia Belgium Brazil Canada Chile China Germany India Malaysia Mexico Russia
South 

Africa

All other 

countries
Total Country name

Net 

decrease 

in U.S. 

GDP

Median 

probability of 

occurrence 

(%)

Samarium — — — — — 4,498 — — — — — — 0 4,498 China 4,498 100

Rhodium — 36 — 3 — 0 214 0 — — 6 2,482 11 2,752 South Africa 64,340 4

Lutetium — — — — — 2,059 — — — — — — 0 2,059 China 2,059 100

Terbium — — — — — 1,809 — — — — — — 0 1,809 China 1,809 100

Dysprosium — — — — — 1,624 — — — — — — 0 1,624 China 1,624 100

Gallium — — — — — 1,418 — — — — 0 — 1 1,419 China 1,418 100

Germanium — 2 — 7 — 805 — — — — 0 — — 814 China 805 100

Gadolinium — — — — — 758 — — — — — — 0 758 China 758 100

Tungsten — — 0 — — 539 2 0 — — 0 — 3 544 China 539 100

Niobium — — 387 6 — 1 — — — — 0 — 0 394 Brazil 10,441 4

Magnesium metal — — 0 2 — 296 0 — — — 0 — 5 303 China 296 100

Yttrium — — — — — 295 — — — — — — 0 295 China 295 100

Potash — — — 274 0 0 1 — — — 10 — 2 287 Canada 2,541 11

Hafnium — — — — — 181 — — — — 0 — 24 206 China 480 38

Aluminum 6 — 0 166 — — — 2 — — 0 6 22 201 Canada 1,537 11

Thulium — — — — — 180 — — — — — — 0 180 China 452 40

Neodymium — — — — — 153 — — 1 — — — 0 154 China 383 40

Silicon ferroalloys — — 14 35 — 23 — 2 11 — 41 0 14 140 Russia 1,000 4

Antimony — 0 — — — 129 — 0 — — 0 — 1 131 China 129 100

Barite 0 — — — — 31 0 45 — 10 0 — 17 104 India 1,001 4

Synthetic graphite — — — — — 99 0 0 0 0 0 — 0 100 China 99 100

Indium — 0 — 1 — 92 — — — — 0 — 3 96 China 92 100

Vanadium — — 2 — — 83 0 0 — — 1 2 4 92 China 217 38

Palladium — 2 — — — — — 0 — — 40 41 2 85 South Africa 1,053 4

Manganese alloys 12 — 0 — — 0 — 7 19 6 0 16 18 77 Malaysia 456 4

Lanthanum — — — — — 74 — — 0 — — — 0 74 China 186 40

Praseodymium — — — — — 66 — — 0 — — — 0 66 China 165 40

Titanium ferroalloys — — — — — 41 0 1 — — 1 — 20 65 China 520 8
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Table 1.  Probability-weighted net decreases in U.S. gross domestic product (GDP), by scenario across all industries, and scenario contributing most to the probability-weighted net decrease in U.S. GDP for each mineral commodity.—Continued

[Mineral commodities are listed in order of overall probability-weighted net decrease in U.S. GDP. Scenarios shown are the disruption of U.S. net imports of the mineral commodities from 12 producers from which the United States was 
a direct or indirect net importer that resulted in the greatest probability-weighted net decrease in U.S. GDP across the mineral commodities examined: Australia, Belgium, Brazil, Canada, Chile, China, Germany, India, Malaysia, Mexico, 
Russia, South Africa. All other scenarios are aggregated under the “all other countries” column. Probability-weighted net decreases are the product of the net decrease in U.S. GDP of the scenario and its median probability of occurrence. 
Results are in current (2023) U.S. dollars and were rounded to the nearest million U.S. dollars; may not add to totals shown. Probability-weighted net decrease values are gradationally shaded between the 5th and 95th percentiles of the 
values in the table to visually highlight positive (orange) to negative (blue) values. For mineral commodities with an overall negative net decrease (meaning those with an overall net increase) in U.S. GDP, the scenario contributing the most 
to the net decrease is not displayed. %, percent; —, indicates that the scenario was not applicable for that mineral commodity]

Mineral commodity

Probability-weighted net decreases in U.S. GDP by scenario

(millions of U.S. dollars)

Scenario contributing most to probability-

weighted net decrease in U.S. GDP

Australia Belgium Brazil Canada Chile China Germany India Malaysia Mexico Russia
South 

Africa

All other 

countries
Total Country name

Net 

decrease 

in U.S. 

GDP

Median 

probability of 

occurrence 

(%)

Copper, refined 0 — — 20 31 — — — — — 0 — 6 56 Chile 878 4

Platinum 0 2 — 4 — 0 — 0 — — 1 44 3 54 South Africa 1,144 4

Ruthenium — 0 — 0 — 0 3 0 — — 0 51 0 54 South Africa 1,249 4

Zinc, smelted 2 — 1 37 — 1 — 0 — 4 0 — 6 51 Canada 346 11

Iridium — 0 — 0 — — 0 — — — 0 47 0 48 South Africa 1,163 4

Cobalt chemicals — 0 — — — 47 — — — — — 0 0 47 China 395 12

Erbium — — — — — 43 — — — — — — 0 43 China 108 40

Chromium metal — — — — — 33 0 — — — 0 — 3 36 China 82 41

Silver 0 — 0 5 1 — — 0 — 17 0 — 12 36 Mexico 435 4

Natural graphite — — 0 0 — 33 — — — 0 0 — 0 34 China 33 100

Tin — 0 1 — — 1 — — 0 — — — 31 33 Indonesia 32 84

Bismuth — — — — — 32 — — — — — — 0 32 China 32 100

Manganese sulfate (high purity) — 0 — — — 29 — — — — — — 0 29 China 409 7

Magnesium compounds 0 — 1 1 — 26 — 0 — 0 0 — 1 28 China 185 14

Titanium sponge — — — — — 15 — — — — 0 — 12 27 China 186 8

Nickel, primary refined 1 — 1 9 — 0 — — — — 0 1 10 22 Canada 84 11

Tantalum 2 — 1 — — 10 — — — — 0 — 5 18 China 56 18

Holmium — — — — — 15 — — — — — — 0 15 China 38 40

Fluorspar, acidspar — — — — — 8 0 — — 5 — 1 0 14 China 82 10

Lithium 0 — — — 1 12 — — — — — — 1 14 China 34 36

Titanium pigment 0 — — 6 — 7 0 — — — 0 — 0 14 China 85 8

Rhenium — — — 7 2 0 1 — — — 0 — 2 12 Canada 61 11

Titanium mineral concentrates 1 — 0 4 — — — 0 0 — −0 2 3 10 Canada 40 11

Cerium — — — — — 9 — — 0 — — — 0 9 China 23 40

Manganese metal — — — — — 7 — — — — — 0 1 9 China 104 7

Lead 1 — 0 4 — 0 0 — — 0 0 0 2 7 Canada 35 11

Titanium metal — — — — — — — — — — 7 — −1 7 Russia 178 4

Chromium ferroalloys — — 0 — — 0 0 0 — — 0 2 2 5 South Africa 45 4
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Table 1.  Probability-weighted net decreases in U.S. gross domestic product (GDP), by scenario across all industries, and scenario contributing most to the probability-weighted net decrease in U.S. GDP for each mineral commodity.—Continued

[Mineral commodities are listed in order of overall probability-weighted net decrease in U.S. GDP. Scenarios shown are the disruption of U.S. net imports of the mineral commodities from 12 producers from which the United States was 
a direct or indirect net importer that resulted in the greatest probability-weighted net decrease in U.S. GDP across the mineral commodities examined: Australia, Belgium, Brazil, Canada, Chile, China, Germany, India, Malaysia, Mexico, 
Russia, South Africa. All other scenarios are aggregated under the “all other countries” column. Probability-weighted net decreases are the product of the net decrease in U.S. GDP of the scenario and its median probability of occurrence. 
Results are in current (2023) U.S. dollars and were rounded to the nearest million U.S. dollars; may not add to totals shown. Probability-weighted net decrease values are gradationally shaded between the 5th and 95th percentiles of the 
values in the table to visually highlight positive (orange) to negative (blue) values. For mineral commodities with an overall negative net decrease (meaning those with an overall net increase) in U.S. GDP, the scenario contributing the most 
to the net decrease is not displayed. %, percent; —, indicates that the scenario was not applicable for that mineral commodity]

Mineral commodity

Probability-weighted net decreases in U.S. GDP by scenario

(millions of U.S. dollars)

Scenario contributing most to probability-

weighted net decrease in U.S. GDP

Australia Belgium Brazil Canada Chile China Germany India Malaysia Mexico Russia
South 

Africa

All other 

countries
Total Country name

Net 

decrease 

in U.S. 

GDP

Median 

probability of 

occurrence 

(%)

Beryllium — — 0 — — 2 — — — — — — 1 4 China 19 11

Europium — — — — — 3 — — — — — — 0 3 China 9 40

Ytterbium — — — — — 3 — — — — — — 0 3 China 7 40

Chromium chemicals — — — — — 2 — 0 — — 0 0 0 2 China 4 41

Arsenic — 0 — — — 2 — — — — 0 — 0 2 China 5 35

Phosphates 0 — — — — 0 — — — 0 0 0 1 1 Peru 9 3

Selenium — 0 — 0 — 0 0 0 — — 0 0 0 1 China 2 19

Zirconium 0 — — — — — — — 0 — 0 0 0 1 South Africa 11 4

Cobalt metal 0 0 — 0 — 0 — — — — 0 — 0 0 Canada 1 11

Mica 0 — — 0 — 0 — 0 0 — 0 0 0 0 China 2 14

Manganese dioxide — — — — — 0 — — — — — 0 0 0 China 3 7

Alumina 0 — 0 0 — 0 0 0 — — 0 — 0 0 Brazil 6 4

Chromite — — 0 — — 0 — 0 — — 0 0 0 0 South Africa 5 4

Bauxite 0 — 0 — — 0 — 0 0 — 0 — 0 0 Jamaica 1 3

Feldspar — — 0 — 0 0 0 0 0 0 0 0 0 0 Turkey 1 4

Manganese ore 0 — 0 — — 0 — 0 0 0 — 0 0 0 Gabon 1 3

Strontium — — — — — 0 — — — 0 — — 0 0 Mexico 0 4

Fluorspar, metspar — — — — — 0 — — — 0 — 0 0 0 China 0 12

Cadmium 0 — — 0 — 0 — — — — 0 — 0 0 China 0 19

Tellurium — — — 0 — 0 — — — — 0 0 0 0 China 0 100

Nickel, mined −0 — — — — −0 — — — — −0 0 −0 −0 — — —

Copper, mined −0 — −0 — −0 — — — — — −0 −0 −0 −0 — — —

Zinc, mined — — — — — — — — — −0 — — −0 −0 — — —

Iron ore −0 — −0 — −0 — — 0 — — 0 −0 −0 −0 — — —

Helium — — — −0 — — — — — — −0 — −0 −1 — — —

Silicon metal −0 — −1 −1 — −0 — — — — −0 — −0 −2 — — —

Molybdenum −0 — — — −1 — — — — −0 −0 — −1 −3 — — —

Gold — — −1 −20 −1 −0 −0 — — −3 −0 −2 −7 −33 — — —
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to have among the largest probability-weighted net decreases 
in U.S. GDP among all the mineral commodities examined, 
owing to the near complete lack of production of these 
mineral commodities outside of China. China was the leading 
contributor to the probability-weighted net decrease in U.S. 
GDP of 46 of the 84 mineral commodities examined, including 
all the rare earth elements, gallium, germanium, tungsten, and 
magnesium metal. Canada and South Africa were each the 
leading contributor to the probability-weighted net decrease 
in U.S. GDP for eight mineral commodities including potash, 
aluminum, and zinc (smelted) for Canada and rhodium, 
platinum, ruthenium, iridium, and chromium ferroalloys for 
South Africa. Most (at least 50 percent) of the contributions to 
the probability-weighted net decrease in U.S. GDP come from 
a single scenario for 65 out of the 76 mineral commodities 
that had positive probability-weighted net decreases in 
U.S. GDP—a reflection of the high degree of country-level 
concentration of both world production and U.S. imports.

Summing the economic impact across mineral 
commodities should not be viewed as the potential effect 
of simultaneous disruptions across multiple mineral 
commodities, as such a scenario may have notably different 
results owing to the interactions between the industries and 
mineral commodities involved.

If a specific disruption scenario were to take place, its 
impact would be greater than the probability-weighted value. 
For example, the modeled South African trade disruption 
of rhodium was estimated to result in a net decrease of over 
$64 billion in U.S. GDP. However, because the probability of 
such an occurrence is 3.9 percent, the probability-weighted 
decrease was just under $2.5 billion. Similarly, a niobium 
disruption from Brazil was estimated to result in a net 
decrease of over $10.4 billion in U.S. GDP, but the estimated 
probability of occurrence is 3.7 percent. This is more clearly 
displayed in figure 2, which plots the effect (net decreases) 
on U.S. GDP (vertical axis) and the median probability of 
occurrence (horizontal axis) for the leading scenario for each 
mineral commodity. Scenarios with net decreases less than 
$1 million are not displayed in figure 2. Figure 2 only displays 
the scenario with largest net decrease in U.S. GDP for each 
mineral commodity. Only one scenario is thus displayed for 
each mineral commodity even if that mineral commodity has 
more than one scenario with net decreases over $1 million. 
Consequently, figure 2 does not display the mineral 
commodity’s overall probability-weighted net decrease in U.S. 
GDP across all scenarios.

Results by Industry

Table 2 displays the same probability-weighted net 
decrease in U.S. GDP for each mineral commodity as 
table 1 but now by leading contributing industry. This 
figure highlights that samarium’s probability-weighted net 
decrease in U.S. GDP was mainly driven by the “Guided 
missile and space vehicle manufacturing [336414]” and the 

“Search, detection, and navigation instruments manufacturing 
[334511]” industries. The “Search, detection, and navigation 
instruments manufacturing [334511]” industry was also a 
notable contributor to the probability-weighted net decrease 
in U.S. GDP for germanium. The largest contributing industry 
to the probability-weighted net decrease in U.S. GDP for 
germanium was, however, the “Semiconductor and related 
device manufacturing [334413]” industry, which was also a 
leading contributor to the probability-weighted net decrease 
in U.S. GDP for gallium, lutetium, and thulium. The “Electric 
lamp bulb and part manufacturing [335110]” industry 
was the largest contributor to the probability-weighted net 
decrease in U.S. GDP for terbium, gadolinium, and yttrium, 
where these mineral commodities are used as phosphors. A 
large contributor to the probability-weighted net decrease in 
U.S. GDP decline for terbium and other rare earths used in 
permanent magnets (dysprosium, gadolinium, neodymium, 
and praseodymium) was the “Audio and video equipment 
manufacturing [334300]” industry.

These results are as much a reflection of the scenarios 
(and the probability of each scenario’s occurrence) as they are 
of the importance of the mineral commodity to the identified 
industry. For example, neodymium and praseodymium play 
prominent roles in permanent magnets, perhaps more so 
than samarium. However, the disruption scenarios for these 
two rare earth elements yielded notably lower impacts than 
those of the other rare earth elements used in permanent 
magnets owing to the increased production of separated 
“light” rare earth elements outside of China in recent years. 
Similarly, lutetium has a very limited role (as a cracking 
catalyst) in petroleum refining, in contrast to palladium, 
platinum, and rhenium. The notable contribution to lutetium’s 
probability-weighted net decrease in U.S. GDP from that 
industry is thus more of a reflection of that scenario (in which 
virtually no lutetium production exists outside of China) than 
of lutetium’s importance to the petroleum refining industry. 
Moreover, because of extremely inelastic supply and demand, 
a large portion of the probability-weighted net decrease in U.S. 
GDP for lutetium was modeled to come from the consuming 
industry paying higher prices.

Results by Economic Effects Component

The effect of consuming industries paying higher 
prices is more clearly reflected in table 3, which summarizes 
the probability-weighted net decrease in U.S. GDP for the 
following economic effects components: consuming industries 
reducing their output, consuming industries paying higher 
prices, producing industries increasing their output, producing 
industries receiving higher prices, and all other industries 
reducing their output. Displaying the results by component 
highlights the role of price elasticities and the availability of 
excess production capacity outside of the restricting country 
in the analysis. Approximately one-half of samarium’s 
probability-weighted net decrease in U.S. GDP was due 
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Figure 2.  Graph showing net decreases in U.S. gross domestic product (GDP) and median probability of occurrence for the leading 
trade disruption scenario for 72 of the 84 mineral commodities examined. Scenarios with net decreases less than $1 million are not 
displayed. Vertical axis is displayed in a logarithmic scale. The gray curves are used to provide a visual reference for the resultant 
probability-weighted net decreases in U.S. GDP (the product of the net decrease in U.S. GDP of the scenario and its median probability) 
at several different orders of magnitude, and intervals between the curves are shaded to help visually group scenarios of similar 
magnitudes. Point labels display the mineral commodity and (where necessary) the supply chain process or chemical form, followed by 
the restricting country in parentheses, shown using each country's 2-letter ISO 3166 country code, as follows: BR, Brazil; CA, Canada; 
CL, Chile; CN, China; GA, Gabon; ID, Indonesia; IN, India; JM, Jamaica; MX, Mexico; MY, Malaysia; PE, Peru; RU, Russia; TR, Turkey; ZA, 
South Africa.



Results and Discussion    17

to consuming industries paying higher prices. Consuming 
industries paying higher prices was a major contributor to the 
probability-weighted net decrease in U.S. GDP for several 
other mineral commodities including aluminum, antimony, 
copper (refined), gold, lead, neodymium, potash, rhodium, 
silver, tungsten, and zinc (smelted). In contrast, consuming 
industries reducing their output was a larger contributor to the 
probability-weighted net decrease in U.S. GDP for most of the 
other mineral commodities with large probability-weighted 
net decreases in U.S. GDP including, dysprosium, gadolinium, 
gallium, germanium, hafnium, magnesium metal, niobium, 
terbium, and yttrium.

Table 3 also provides insights into the availability or lack 
of domestic production. As noted earlier, under scenarios of 
foreign trade disruptions, domestic producers of the mineral 
commodity benefit from higher prices and increased output. 
For all mineral commodities examined, domestic producers 
benefited more from higher prices than from increased output. 
This was especially the case for producers of aluminum, 
copper (refined), gold, lead, rhodium, and tungsten. For gold, 
the higher prices that domestic producers would be expected 
to receive more than offset the expected decreases in U.S. 
GDP attributable to lower outputs of and higher prices paid by 
consuming industries.

The impact on all other industries (those that are not 
direct consumers or producers of the mineral commodity) 
varies notably by mineral commodity and reflects how 
downstream industries may be affected. One factor that 
may have affected these results was whether the mineral 
commodity was consumed as a final good (as reflected 
in final demand) or was mainly an input for downstream 
manufacturers (as reflected in interindustry intermediate 
demand). Several of the mineral commodity alloys (for 
example, manganese alloys, silicon ferroalloys, and 
titanium ferroalloys) have much larger contributions to 
the probability-weighted net decreases in U.S. GDP from 
downstream industries rather than from direct consuming 
industries. For some mineral commodities, the contributions 
to the probability-weighted net decrease in U.S. GDP was 
negative for both the consuming industries and all other 
industries, reflecting a net increase in their overall economic 
activity. Note that these are aggregate results (across various 
industries and scenarios) and can be attributed to the 
optimization routine finding an optimal solution that allowed 
some industries to increase their economic activity while 
satisfying the specified constraints on mineral commodity 
availability and industry output capacity. This economic 
adjustment would occur when industries with relatively high 
contributions to U.S. GDP per unit of mineral commodity 
consumption increased their output while industries with 
lower contributions reduced their output even more, thereby 
reducing the overall consumption of the mineral commodity 
and meeting the mineral availability constraint of the scenario. 
These tradeoffs between industries were limited by the 
objective function of the optimization routine, which sought 
to minimize change. In practical terms, these net increases 

in U.S. GDP from direct and indirect consuming industries 
reflects the ability of industries to adjust their economic 
activities in response to the trade disruption scenario.

Summary of Results and Recommendations

Table 4 provides a summary of the key results (the 
probability-weighted net decreases in U.S. GDP for each 
mineral commodity examined) and recommendations for 
each mineral commodity’s inclusion on the LCM. The results 
largely reflect the following factors:

1.	 the concentration of U.S. net imports from countries 
likely to prohibit exports,

2.	 the size of U.S. imports as a share of production outside 
of the restricting country,

3.	 the import dependence of the United States,

4.	 the availability of excess capacity outside of the 
restricting country,

5.	 the responsiveness (elasticity) of supply and demand in 
the short term (within 1 year), and

6.	 the economic value of the (direct and indirect) 
consuming and producing industries’ contributions to the 
U.S. economy.

As described in the “Methods” section, statistical risk 
categories were determined based on the Jenks natural breaks 
optimization method. The results of that statistical method 
indicate that the probability-weighted net decreases in U.S. 
GDP for the 84 mineral commodities examined can be 
classified into five risk classes or categories (after excluding 
the mineral commodities with overall net increases to the 
probability-weighted U.S. GDP, indicated as “negative” in 
table 4). These risk categories, as shown in table 4, had the 
following descriptors and ranges of probability-weighted 
net decreases (in millions of current [2023] U.S. dollars): 
“negligible,” 0 to 0.06; “limited,” >0.06 to 2; “moderate,” 
>2 to 22; “elevated,” >22 to 206; and “high,” >206.

Based on the first criterion, mineral commodities 
are recommended be included on the updated LCM if the 
probability-weighted net decrease in U.S. GDP decline 
was found to be at or above the “moderate” risk category 
in any stage of the supply chain (or chemical form). 
With two risk categories above and two risk categories 
below, selecting the “moderate” risk category prevents 
the exclusion of mineral commodities with notable risks 
(those with probability-weighted net decreases in U.S. 
GDP in the tens of millions of current [2023] U.S. dollars) 
and avoids the inclusion of those with risks that are likely 
too low for consequential policy consideration (those with 
probability-weighted net decreases in U.S. GDP in the 
hundreds of thousands of U.S. dollars and up to $2 million). 
Policymakers and other users who use the LCM may, 
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Table 2. Probability-weighted net decrease in U.S. gross domestic product (GDP) by industry across all scenarios, and industry 
contributing most to probability-weighted net decrease in U.S. GDP for each mineral commodity.

[Mineral commodities are listed in order of overall probability-weighted net decrease in U.S. GDP. Only the 10 industries that contributed the most 
(in descending order from left to right) to the probability-weighted net decrease in U.S. GDP across all mineral commodities are displayed. The 
probability-weighted net decrease in U.S. GDP for the remaining 392 industries are aggregated under the “all other industries” category. Each industry name 
is followed by a 6-character alphanumeric code from the U.S. Bureau of Economic Analysis in brackets. Results are in current (2023) U.S. dollars and were 
rounded to the nearest million U.S. dollars; may not add to totals shown. Probability-weighted net decrease values are gradationally shaded between the 5th and 
95th percentiles of the values in the table to visually highlight positive (orange) to negative (blue) values. mfg., manufacturing]

Mineral commodity

Probability-weighted net decrease in U.S. GDP by industry

(millions of U.S. dollars)

Semiconductor 

and related 

device mfg. 

[334413]

Light truck and 

utility vehicle 

mfg. [336112]

Guided missile 

and space 

vehicle mfg. 

[336414]

Search, 

detection, and 

navigation 

instruments mfg. 

[334511]

Audio 

and video 

equipment 

mfg. [334300]

Electric lamp 

bulb and part 

mfg. [335110]

Petroleum 

refineries 

[324110]

Electromedical 

and electro-

therapeutic 

apparatus mfg. 

[334510]

Samarium 26 −1 2,184 1,497 −3 −3 −1 13

Rhodium 9 2,084 −1 −1 7 −1 3 −1

Lutetium 608 −0 −1 −1 −1 −1 778 163

Terbium 245 55 7 12 366 384 −0 73

Dysprosium 8 63 10 27 638 −1 −0 200

Gallium 1,346 0 −0 0 −0 −0 0 0

Germanium 293 −0 −0 127 −0 −1 0 96

Gadolinium 3 1 11 7 76 301 0 23

Tungsten 6 −0 −0 −0 −0 84 43 −0

Niobium 2 0 −0 0 −0 −0 1 54

Magnesium metal 2 −0 −0 −0 −0 −0 0 −0

Yttrium 2 −0 −0 −0 −0 181 −0 −0

Potash 0 −0 −0 −0 −0 −0 0 −0

Hafnium 1 −0 3 1 −0 −0 1 −0

Aluminum 1 0 −0 0 −0 0 0 −0

Thulium 146 −0 −0 −0 −0 −0 0 −0

Neodymium 0 19 2 1 53 −0 −0 5

Silicon ferroalloys 1 0 0 0 0 −0 0 0

Antimony 0 −0 −0 −0 −0 −0 0 −0

Barite 0 −0 −0 −0 −0 −0 0 −0

Synthetic graphite 0 −0 −0 −0 −0 −0 0 −0

Indium 4 −0 −0 −0 −0 −0 0 −0

Vanadium 0 −0 −0 −0 −0 −0 0 −0

Palladium 2 45 −0 −0 −0 −0 1 −0

Manganese alloys 0 0 0 0 0 −0 0 0

Lanthanum 0 0 −0 0 0 9 10 −0

Praseodymium 0 2 0 0 17 2 0 2

Titanium ferroalloys 0 0 −0 0 0 −0 0 0

Copper, refined 0 0 −0 0 −0 −0 0 0

Platinum 0 16 −0 −0 −0 −0 1 2

Ruthenium 2 −0 −0 0 −0 −0 0 −0

Zinc, smelted −0 −0 0 0 0 0 −0 0

Iridium 0 −0 −0 0 −0 −0 0 2

Cobalt chemicals 0 −0 −0 −0 −0 −0 1 −0

Erbium 4 −0 −0 −0 −0 −0 0 −0
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Table 2. Probability-weighted net decrease in U.S. gross domestic product (GDP) by industry across all scenarios, and industry 
contributing most to probability-weighted net decrease in U.S. GDP for each mineral commodity.—Continued

[Mineral commodities are listed in order of overall probability-weighted net decrease in U.S. GDP. Only the 10 industries that contributed the most 
(in descending order from left to right) to the probability-weighted net decrease in U.S. GDP across all mineral commodities are displayed. The 
probability-weighted net decrease in U.S. GDP for the remaining 392 industries are aggregated under the “all other industries” category. Each industry name 
is followed by a 6-character alphanumeric code from the U.S. Bureau of Economic Analysis in brackets. Results are in current (2023) U.S. dollars and were 
rounded to the nearest million U.S. dollars; may not add to totals shown. Probability-weighted net decrease values are gradationally shaded between the 5th and 
95th percentiles of the values in the table to visually highlight positive (orange) to negative (blue) values. mfg., manufacturing]

Mineral commodity

Probability-weighted net decrease in U.S. GDP 

by industry

(millions of U.S. dollars)

Industry contributing most to probability-weighted net decrease in U.S. GDPOther 

electronic 

component 

mfg. [33441A]

Automobile 

mfg. [336111]

All other 

industries
Total

Samarium 91 −1 697 4,498 Guided missile and space vehicle mfg. [336414]

Rhodium 6 327 320 2,752 Light truck and utility vehicle mfg. [336112]

Lutetium 3 −1 510 2,059 Petroleum refineries [324110]

Terbium 148 57 462 1,809 Electric lamp bulb and part mfg. [335110]

Dysprosium 24 78 578 1,624 Audio and video equipment mfg. [334300]

Gallium 4 −0 69 1,419 Semiconductor and related device mfg. [334413]

Germanium 4 −0 296 814 Semiconductor and related device mfg. [334413]

Gadolinium 64 2 270 758 Electric lamp bulb and part mfg. [335110]

Tungsten −0 −0 412 544 Cutting and machine tool accessory, rolling mill, and other metalworking 
machinery mfg. [33351B]

Niobium 16 −0 322 394 Iron and steel mills and ferroalloy mfg. [331110]

Magnesium metal 0 −0 301 303 Nonferrous metal foundries [331520]

Yttrium 10 −0 103 295 Electric lamp bulb and part mfg. [335110]

Potash −0 −0 287 287 Fertilizer mfg. [325310]

Hafnium 0 −0 199 206 Electric power generation, transmission, and distribution [221100]

Aluminum 0 −0 201 201 Aluminum product mfg. from purchased aluminum [33131B]

Thulium 34 −0 1 180 Semiconductor and related device mfg. [334413]

Neodymium 15 11 48 154 Audio and video equipment mfg. [334300]

Silicon ferroalloys 0 0 139 140 Iron and steel mills and ferroalloy mfg. [331110]

Antimony −0 −0 131 131 Plastics material and resin mfg. [325211]

Barite −0 −0 103 104 Drilling oil and gas wells [213111]

Synthetic graphite 0 −0 99 100 Carbon and graphite product mfg. [335991]

Indium 30 −0 62 96 Other electronic component mfg. [33441A]

Vanadium 0 −0 92 92 Iron and steel mills and ferroalloy mfg. [331110]

Palladium 15 6 16 85 Light truck and utility vehicle mfg. [336112]

Manganese alloys 0 0 76 77 Iron and steel mills and ferroalloy mfg. [331110]

Lanthanum −0 0 55 74 Storage battery mfg. [335911]

Praseodymium 5 2 37 66 Synthetic dye and pigment mfg. [325130]

Titanium ferroalloys 0 0 64 65 Iron and steel mills and ferroalloy mfg. [331110]

Copper, refined 0 0 56 56 Copper rolling, drawing, extruding and alloying [331420]

Platinum 1 1 31 54 Jewelry and silverware mfg. [339910]

Ruthenium 13 −0 38 54 Other basic organic chemical mfg. [325190]

Zinc, smelted −0 −0 51 51 Iron and steel mills and ferroalloy mfg. [331110]

Iridium 11 −0 33 48 Other electronic component mfg. [33441A]

Cobalt chemicals −0 −0 46 47 Storage battery mfg. [335911]

Erbium 0 −0 39 43 Communication and energy wire and cable mfg. [335920]
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Table 2. Probability-weighted net decrease in U.S. gross domestic product (GDP) by industry across all scenarios, and industry 
contributing most to probability-weighted net decrease in U.S. GDP for each mineral commodity.—Continued

[Mineral commodities are listed in order of overall probability-weighted net decrease in U.S. GDP. Only the 10 industries that contributed the most 
(in descending order from left to right) to the probability-weighted net decrease in U.S. GDP across all mineral commodities are displayed. The 
probability-weighted net decrease in U.S. GDP for the remaining 392 industries are aggregated under the “all other industries” category. Each industry name 
is followed by a 6-character alphanumeric code from the U.S. Bureau of Economic Analysis in brackets. Results are in current (2023) U.S. dollars and were 
rounded to the nearest million U.S. dollars; may not add to totals shown. Probability-weighted net decrease values are gradationally shaded between the 5th and 
95th percentiles of the values in the table to visually highlight positive (orange) to negative (blue) values. mfg., manufacturing]

Mineral commodity

Probability-weighted net decrease in U.S. GDP by industry

(millions of U.S. dollars)

Semiconductor 

and related 

device mfg. 

[334413]

Light truck and 

utility vehicle 

mfg. [336112]

Guided missile 

and space 

vehicle mfg. 

[336414]

Search, 

detection, and 

navigation 

instruments mfg. 

[334511]

Audio 

and video 

equipment 

mfg. [334300]

Electric lamp 

bulb and part 

mfg. [335110]

Petroleum 

refineries 

[324110]

Electromedical 

and electro-

therapeutic 

apparatus mfg. 

[334510]

Chromium metal 0 −0 −0 −0 −0 −0 0 −0

Silver 6 −0 −0 −0 −0 −0 −0 −0

Natural graphite 0 −0 −0 −0 −0 −0 0 −0

Tin −0 −0 −0 −0 −0 −0 0 −0

Bismuth 0 −0 −0 −0 −0 −0 0 −0

Manganese sulfate (high purity) 0 0 −0 −0 −0 −0 0 −0

Magnesium compounds 0 −0 −0 −0 −0 −0 0 −0

Titanium sponge 0 −0 −0 −0 −0 0 0 −0

Nickel, primary refined 0 −0 −0 −0 −0 0 0 −0

Tantalum 4 −0 −0 −0 −0 −0 0 −0

Holmium 3 −0 −0 −0 −0 −0 0 −0

Fluorspar, acidspar 0 −0 −0 −0 −0 −0 0 −0

Lithium 0 −0 −0 −0 −0 −0 −0 −0

Titanium pigment 0 0 −0 −0 −0 −0 0 −0

Rhenium 4 −0 −0 −0 −0 −0 0 −0

Titanium mineral concentrates 0 −0 −0 −0 −0 −0 0 −0

Cerium 0 1 0 0 0 0 0 0

Manganese metal 0 −0 −0 −0 −0 −0 0 −0

Lead −0 −0 0 0 0 −0 −0 0

Titanium metal 0 −0 0 0 −0 −0 0 −0

Chromium ferroalloys 0 0 −0 −0 −0 −0 0 −0

Beryllium 0 −0 −0 0 −0 −0 −0 0

Europium 1 −0 −0 −0 −0 0 0 0

Ytterbium 0 −0 −0 0 −0 −0 0 −0

Chromium chemicals 0 −0 −0 −0 −0 −0 0 −0

Arsenic 0 −0 0 −0 0 −0 −0 −0

Phosphates 0 0 0 0 0 0 −0 0

Selenium 0 −0 0 −0 −0 −0 −0 −0

Zirconium 0 −0 −0 −0 −0 −0 0 −0

Cobalt metal −0 0 0 0 0 −0 0 0

Mica 0 −0 −0 −0 −0 −0 0 −0

Manganese dioxide 0 −0 −0 −0 −0 −0 0 −0

Alumina 0 0 0 0 −0 −0 0 −0

Chromite 0 −0 −0 −0 −0 −0 0 −0
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Table 2. Probability-weighted net decrease in U.S. gross domestic product (GDP) by industry across all scenarios, and industry 
contributing most to probability-weighted net decrease in U.S. GDP for each mineral commodity.—Continued

[Mineral commodities are listed in order of overall probability-weighted net decrease in U.S. GDP. Only the 10 industries that contributed the most 
(in descending order from left to right) to the probability-weighted net decrease in U.S. GDP across all mineral commodities are displayed. The 
probability-weighted net decrease in U.S. GDP for the remaining 392 industries are aggregated under the “all other industries” category. Each industry name 
is followed by a 6-character alphanumeric code from the U.S. Bureau of Economic Analysis in brackets. Results are in current (2023) U.S. dollars and were 
rounded to the nearest million U.S. dollars; may not add to totals shown. Probability-weighted net decrease values are gradationally shaded between the 5th and 
95th percentiles of the values in the table to visually highlight positive (orange) to negative (blue) values. mfg., manufacturing]

Mineral commodity

Probability-weighted net decrease in U.S. GDP 

by industry

(millions of U.S. dollars)

Industry contributing most to probability-weighted net decrease in U.S. GDPOther 

electronic 

component 

mfg. [33441A]

Automobile 

mfg. [336111]

All other 

industries
Total

Chromium metal −0 −0 36 36 Nonferrous metal (except copper and aluminum) rolling, drawing, extruding and 
alloying [331490]

Silver 8 −0 22 36 Coating, engraving, heat treating and allied activities [332800]

Natural graphite −0 −0 33 34 Carbon and graphite product mfg. [335991]

Tin 1 −0 32 33 Fabricated pipe and pipe fitting mfg. [332996]

Bismuth −0 −0 32 32 Pharmaceutical preparation mfg. [325412]

Manganese sulfate (high purity) −0 −0 29 29 Storage battery mfg. [335911]

Magnesium compounds 0 −0 28 28 All other chemical product and preparation mfg. [3259A0]

Titanium sponge 0 −0 27 27 Nonferrous metal (except copper and aluminum) rolling, drawing, extruding and 
alloying [331490]

Nickel, primary refined −0 −0 22 22 Iron and steel mills and ferroalloy mfg. [331110]

Tantalum 3 −0 11 18 Semiconductor and related device mfg. [334413]

Holmium 11 −0 2 15 Other electronic component mfg. [33441A]

Fluorspar, acidspar −0 −0 14 14 Industrial gas mfg. [325120]

Lithium 1 −0 12 14 Storage battery mfg. [335911]

Titanium pigment 0 0 13 14 Paint and coating mfg. [325510]

Rhenium 3 −0 5 12 Semiconductor and related device mfg. [334413]

Titanium mineral concentrates 0 −0 10 10 Synthetic dye and pigment mfg. [325130]

Cerium 1 0 7 9 All other chemical product and preparation mfg. [3259A0]

Manganese metal −0 −0 9 9 Secondary smelting and alloying of aluminum [331314]

Lead −0 −0 7 7 Storage battery mfg. [335911]

Titanium metal 0 −0 6 7 Aircraft mfg. [336411]

Chromium ferroalloys 0 −0 5 5 Iron and steel mills and ferroalloy mfg. [331110]

Beryllium 2 −0 2 4 Other electronic component mfg. [33441A]

Europium 0 −0 2 3 Medical and diagnostic laboratories [621500]

Ytterbium 0 −0 2 3 Communication and energy wire and cable mfg. [335920]

Chromium chemicals −0 −0 2 2 Synthetic dye and pigment mfg. [325130]

Arsenic −0 −0 2 2 Sawmills and wood preservation [321100]

Phosphates 0 0 1 1 Fertilizer mfg. [325310]

Selenium −0 −0 0 1 Other animal food mfg. [311119]

Zirconium 0 −0 1 1 Paper mills [322120]

Cobalt metal −0 0 0 0 Aircraft engine and engine parts mfg. [336412]

Mica −0 −0 0 0 Paint and coating mfg. [325510]

Manganese dioxide −0 −0 0 0 Primary battery mfg. [335912]

Alumina 0 −0 0 0 Abrasive product mfg. [327910]

Chromite −0 −0 0 0 Other basic inorganic chemical mfg. [325180]
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Table 2. Probability-weighted net decrease in U.S. gross domestic product (GDP) by industry across all scenarios, and industry 
contributing most to probability-weighted net decrease in U.S. GDP for each mineral commodity.—Continued

[Mineral commodities are listed in order of overall probability-weighted net decrease in U.S. GDP. Only the 10 industries that contributed the most 
(in descending order from left to right) to the probability-weighted net decrease in U.S. GDP across all mineral commodities are displayed. The 
probability-weighted net decrease in U.S. GDP for the remaining 392 industries are aggregated under the “all other industries” category. Each industry name 
is followed by a 6-character alphanumeric code from the U.S. Bureau of Economic Analysis in brackets. Results are in current (2023) U.S. dollars and were 
rounded to the nearest million U.S. dollars; may not add to totals shown. Probability-weighted net decrease values are gradationally shaded between the 5th and 
95th percentiles of the values in the table to visually highlight positive (orange) to negative (blue) values. mfg., manufacturing]

Mineral commodity

Probability-weighted net decrease in U.S. GDP by industry

(millions of U.S. dollars)

Semiconductor 

and related 

device mfg. 

[334413]

Light truck and 

utility vehicle 

mfg. [336112]

Guided missile 

and space 

vehicle mfg. 

[336414]

Search, 

detection, and 

navigation 

instruments mfg. 

[334511]

Audio 

and video 

equipment 

mfg. [334300]

Electric lamp 

bulb and part 

mfg. [335110]

Petroleum 

refineries 

[324110]

Electromedical 

and electro-

therapeutic 

apparatus mfg. 

[334510]

Bauxite 0 −0 −0 −0 −0 −0 0 −0

Feldspar 0 −0 −0 −0 −0 −0 0 −0

Manganese ore 0 −0 −0 −0 −0 −0 0 −0

Strontium 0 −0 −0 −0 −0 −0 0 −0

Fluorspar, metspar 0 −0 −0 −0 −0 −0 0 −0

Cadmium 0 −0 −0 −0 −0 −0 0 −0

Tellurium 0 −0 0 −0 −0 −0 0 −0

Nickel, mined 0 0 0 0 0 0 −0 0

Copper, mined 0 0 −0 −0 −0 0 −0 0

Zinc, mined 0 −0 −0 −0 −0 −0 −0 −0

Iron ore −0 −0 0 0 0 0 −0 −0

Helium 0 −0 0 0 −0 0 −0 −0

Silicon metal 0 −0 −0 −0 −0 −0 0 −0

Molybdenum 0 −0 −0 −0 −0 2 3 1

Gold 16 −0 −0 −0 −0 −0 0 −0

however, elect to use a different minimum risk category (for 
example, “elevated”) or a specific monetary cutoff value (for 
example, $100 million) that corresponds to a specific risk 
tolerance or meets the definition of “significant consequences” 
outlined in the Energy Act of 2020.

The second criterion was if the mineral commodity had 
a SPOF. Although several mineral commodities currently 
have a SPOF, it was only necessary to apply this criterion to 
zirconium given that the other mineral commodities had risk 
ratings categorized as being “moderate” or higher. Although 
there were two firms that recovered zircon—the primary 
source of zirconium—from heavy-mineral sands and two 
firms that produced zirconium metal (U.S. Geological Survey, 
2025a), there was only one domestic producer of fused zircon 
and no domestic producer of zirconium oxychloride, both of 
which were necessary precursors for zirconium metal (Nassar 
and Fortier, 2021; U.S. Trade Representative, 2019).

In comparison to the previous LCM from 2022, several 
additional mineral commodities are now recommended for 
inclusion (in descending order of risk as determined in this 
assessment): potash, silicon (in particular, silicon ferroalloys), 
copper (in particular, refined copper), silver, rhenium, and 

lead. Although global potash production was not as highly 
concentrated as some other mineral commodities, the vast 
majority (approximately 90 percent) of U.S. net imports of 
potash were obtained from a single country, Canada, in 2023. 
Potash’s relatively large probability-weighted net decrease in 
U.S. GDP is thus principally a reflection of the high degree 
of U.S. dependency on Canada (refer to table 1 and fig. 2). 
In contrast to the low disruption probabilities for Russia and 
South Africa, Canada’s disruption probability for several 
mineral commodities is relatively high (for example, just 
under 11 percent for potash). This comparatively elevated 
probability can be attributed to Canada’s relatively high rate 
of historical trade barrier implementation. Between 1989 and 
2023, Canada implemented prohibition, quota, or licensing 
requirements on mineral commodities in 8 different years, 
whereas other key mineral commodity-producing countries 
such as Russia and South Africa have implemented such 
barriers in only 6 and 4 different years, respectively (Ryter 
and Nassar, 2025). Even if the probability of a Canadian 
potash trade disruption scenario occurring was an order 
magnitude lower than estimated (for example, 1.1 percent 
instead of 11 percent), the overall probability-weighted net 
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decrease in U.S. GDP for potash would still be considerably 
higher (around $41 million after accounting for not only the 
assumed lower probability for the Canadian scenario but also 
all the other scenarios at the estimated probabilities) than the 
minimum value required to meet the “moderate” risk category 
of greater than $2 million. Silver’s probability-weighted net 
decrease in U.S. GDP is largely due to a scenario in which 
Mexico stops silver exports to the United States—a high 
impact ($435 million), low probability (4 percent) event 
(refer to table 1 and fig. 2). In the previous LCM assessment 
(Nassar and Fortier, 2021), lead and rhenium were both just 
below the cutoff threshold for recommendation to the LCM, 
whereas the risk for refined copper was trending upward. 
The evaluation of lead and rhenium just above the minimum 
threshold of this assessment underscores the idea that risk 
assessments operate on a continuum. Evaluating a mineral 
commodity just above and subsequently just below a threshold 
in consecutive assessments may also warrant the retention 
of the mineral commodity on the LCM for additional time to 
allow for stability in policymaking. Silicon metal and mined 
copper have negative probability-weighted net decreases in 
U.S. GDP but are still recommended for inclusion because of 

the risks associated with other stages of their supply chains, 
namely silicon ferroalloys and refined copper. Their negative 
probability-weighted net decreases in U.S. GDP were due 
to the United States being a net exporter of copper ores and 
concentrates and exporting higher value (and higher grades of) 
silicon metal (polysilicon) than it imports.

Arsenic and tellurium, both of which were included 
on the previous LCM in 2022, do not qualify under either 
criterion of this assessment. With the recent installation 
of copper telluride recovery capability by a major copper 
operation in Utah (Rio Tinto plc, 2022), the United States 
has moved from being over 95 percent net import reliant 
in 2021 to being a net exporter of tellurium in 2023 (U.S. 
Geological Survey, 2025a). Although the domestically 
produced copper telluride was not refined in the United 
States, the notable reduction of U.S. imports of tellurium 
since 2022 (U.S. Geological Survey, 2025a) has resulted 
in a decrease in tellurium’s supply risk from foreign trade 
disruptions. However, that risk may return if one or both 
current domestic producers stop recovering copper telluride 
or if world tellurium production becomes even more 
geopolitically concentrated despite the notable enrichment 

Table 2. Probability-weighted net decrease in U.S. gross domestic product (GDP) by industry across all scenarios, and industry 
contributing most to probability-weighted net decrease in U.S. GDP for each mineral commodity.—Continued

[Mineral commodities are listed in order of overall probability-weighted net decrease in U.S. GDP. Only the 10 industries that contributed the most 
(in descending order from left to right) to the probability-weighted net decrease in U.S. GDP across all mineral commodities are displayed. The 
probability-weighted net decrease in U.S. GDP for the remaining 392 industries are aggregated under the “all other industries” category. Each industry name 
is followed by a 6-character alphanumeric code from the U.S. Bureau of Economic Analysis in brackets. Results are in current (2023) U.S. dollars and were 
rounded to the nearest million U.S. dollars; may not add to totals shown. Probability-weighted net decrease values are gradationally shaded between the 5th and 
95th percentiles of the values in the table to visually highlight positive (orange) to negative (blue) values. mfg., manufacturing]

Mineral commodity

Probability-weighted net decrease in U.S. GDP 

by industry

(millions of U.S. dollars)

Industry contributing most to probability-weighted net decrease in U.S. GDPOther 

electronic 

component 

mfg. [33441A]

Automobile 

mfg. [336111]

All other 

industries
Total

Bauxite −0 −0 0 0 Alumina refining and primary aluminum production [331313]

Feldspar −0 0 0 0 Paint and coating mfg. [325510]

Manganese ore −0 −0 0 0 Other basic inorganic chemical mfg. [325180]

Strontium −0 −0 0 0 Drilling oil and gas wells [213111]

Fluorspar, metspar −0 −0 0 0 Clay product and refractory mfg. [327100]

Cadmium −0 −0 0 0 Storage battery mfg. [335911]

Tellurium −0 −0 −0 0 Semiconductor and related device mfg. [334413]

Nickel, mined 0 0 −0 −0 Nonferrous metal (except aluminum) smelting and refining [331410]

Copper, mined 0 0 −0 −0 Nonferrous metal (except aluminum) smelting and refining [331410]

Zinc, mined −0 −0 −0 −0 Nonferrous metal (except aluminum) smelting and refining [331410]

Iron ore −0 −0 −0 −0 Iron and steel mills and ferroalloy mfg. [331110]

Helium 0 −0 −1 −1 Sporting and athletic goods mfg. [339920]

Silicon metal −0 −0 −2 −2 Synthetic rubber and artificial and synthetic fibers and filaments mfg. [3252A0]

Molybdenum 0 −0 −9 −3 Iron and steel mills and ferroalloy mfg. [331110]

Gold 18 −0 −66 −33 Jewelry and silverware mfg. [339910]
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Table 3.  Probability-weighted net decrease in U.S. gross domestic product (GDP) by economic effects component (net decrease in 
U.S. GDP owing to changes in industry outputs or higher mineral commodity prices).

[Mineral commodities are listed in order of overall probability-weighted net decrease in U.S. GDP. Results are in current (2023) U.S. dollars and were rounded 
to the nearest million U.S. dollars; may not add to totals shown. Probability-weighted net decrease values are gradationally shaded between the 5th and 95th 
percentiles of the values in the table to visually highlight positive (orange) to negative (blue) values. —, no domestic producers of the mineral commodity]

Mineral commodity

Probability-weighted net decreases in U.S. GDP by economic effect component
(millions of U.S. dollars)

Consuming 
industries 

reducing output

Consuming 
industries 

paying higher 
prices

Producing 
industries 
increasing 

output

Producing 
industries 

receiving higher 
prices

All other 
industries 

reducing output
Total

Samarium 2,003 2,266 — — 229 4,498
Rhodium 727 2,151 −7 −580 460 2,752
Lutetium 1,413 486 — — 160 2,059
Terbium 1,422 403 −0 −30 14 1,809
Dysprosium 1,260 353 −0 −32 44 1,624
Gallium 1,231 116 — — 73 1,419
Germanium 744 29 — — 41 814
Gadolinium 688 38 −0 −1 33 758
Tungsten 191 569 −4 −216 4 544
Niobium 237 16 — — 142 394
Magnesium metal 177 94 −3 −24 59 303
Yttrium 203 89 — — 3 295
Potash 79 229 −2 −29 10 287
Hafnium 185 60 −2 −49 12 206
Aluminum 21 234 −3 −88 37 201
Thulium 141 41 — — −1 180
Neodymium 57 112 −1 −16 1 154
Silicon ferroalloys 22 3 −0 −1 116 140
Antimony 32 99 −0 −4 4 131
Barite 95 6 −1 −2 6 104
Synthetic graphite 73 80 −15 −51 12 100
Indium 81 12 — — 3 96
Vanadium 60 23 −1 −16 27 92
Palladium 58 56 −3 −28 3 85
Manganese alloys 11 1 −0 −0 66 77
Lanthanum 48 23 −0 −0 3 74
Praseodymium 48 17 −0 −3 4 66
Titanium ferroalloys 14 0 −0 −0 51 65
Copper, refined 4 114 −1 −68 8 56
Platinum 23 46 −1 −12 −1 54
Ruthenium 21 32 −0 −1 1 54
Zinc, smelted −1 75 −0 −18 −4 51
Iridium 28 19 −0 −2 3 48
Cobalt chemicals 32 10 — — 5 47
Erbium 22 19 — — 2 43
Chromium metal 18 15 — — 3 36
Silver 4 59 −3 −24 −0 36



Results and Discussion    25

Table 3.  Probability-weighted net decrease in U.S. gross domestic product (GDP) by economic effects component (net decrease in 
U.S. GDP owing to changes in industry outputs or higher mineral commodity prices).—Continued

[Mineral commodities are listed in order of overall probability-weighted net decrease in U.S. GDP. Results are in current (2023) U.S. dollars and were rounded 
to the nearest million U.S. dollars; may not add to totals shown. Probability-weighted net decrease values are gradationally shaded between the 5th and 95th 
percentiles of the values in the table to visually highlight positive (orange) to negative (blue) values. —, no domestic producers of the mineral commodity]

Mineral commodity

Probability-weighted net decreases in U.S. GDP by economic effect component
(millions of U.S. dollars)

Consuming 
industries 

reducing output

Consuming 
industries 

paying higher 
prices

Producing 
industries 
increasing 

output

Producing 
industries 

receiving higher 
prices

All other 
industries 

reducing output
Total

Natural graphite 13 18 — — 2 34
Tin 5 41 −1 −12 −1 33
Bismuth 5 27 — — 0 32
Manganese sulfate (high purity) 23 0 — — 5 29
Magnesium compounds 23 4 −0 −3 5 28
Titanium sponge 11 11 −0 −0 5 27
Nickel, primary refined 0 22 — — 0 22
Tantalum 11 7 — — 0 18
Holmium 2 13 — — −0 15
Fluorspar, acidspar 9 4 — — 0 14
Lithium 1 23 −1 −8 −1 14
Titanium pigment 13 12 −1 −13 3 14
Rhenium 12 0 −0 −0 0 12
Titanium mineral concentrates 3 6 −0 −0 1 10
Cerium 3 6 −0 −0 0 9
Manganese metal 5 2 — — 2 9
Lead −5 59 −1 −43 −2 7
Titanium metal 9 5 −1 −7 1 7
Chromium ferroalloys 2 1 — — 2 5
Beryllium 4 2 −0 −2 0 4
Europium 3 0 — — 0 3
Ytterbium 0 2 — — 0 3
Chromium chemicals 2 1 −0 −1 0 2
Arsenic −0 2 — — −0 2
Phosphates −1 13 −0 −11 −0 1
Selenium −0 1 −0 −0 −0 1
Zirconium 1 0 −0 −0 0 1
Cobalt metal 0 2 −0 −2 0 0
Mica 0 0 −0 −0 0 0
Manganese dioxide 0 0 −0 −0 0 0
Alumina 0 0 −0 −0 0 0
Chromite 0 0 — — 0 0
Bauxite 0 0 −0 −0 0 0
Feldspar 0 0 −0 −0 0 0
Manganese ore 0 0 — — 0 0
Strontium 0 0 — — −0 0
Fluorspar, metspar 0 0 — — 0 0
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Table 3.  Probability-weighted net decrease in U.S. gross domestic product (GDP) by economic effects component (net decrease in 
U.S. GDP owing to changes in industry outputs or higher mineral commodity prices).—Continued

[Mineral commodities are listed in order of overall probability-weighted net decrease in U.S. GDP. Results are in current (2023) U.S. dollars and were rounded 
to the nearest million U.S. dollars; may not add to totals shown. Probability-weighted net decrease values are gradationally shaded between the 5th and 95th 
percentiles of the values in the table to visually highlight positive (orange) to negative (blue) values. —, no domestic producers of the mineral commodity]

Mineral commodity

Probability-weighted net decreases in U.S. GDP by economic effect component
(millions of U.S. dollars)

Consuming 
industries 

reducing output

Consuming 
industries 

paying higher 
prices

Producing 
industries 
increasing 

output

Producing 
industries 

receiving higher 
prices

All other 
industries 

reducing output
Total

Cadmium 0 0 −0 −0 0 0
Tellurium −0 0 −0 −0 0 0
Nickel, mined 0 0 −0 −0 −0 −0
Copper, mined 0 0 −0 −0 0 −0
Zinc, mined 0 0 −0 −0 −0 −0
Iron ore −0 1 −0 −1 −0 −0
Helium 0 1 −0 −1 0 −1
Silicon metal 0 0 −0 −3 −0 −2
Molybdenum 3 28 −2 −30 −1 −3
Gold −3 196 −0 −222 −3 −33

(but lack of recovery) of tellurium within the copper anode 
slimes of copper electrolytic refineries (Nassar and others, 
2022). Although the United States obtains most of its arsenic 
from China, revised data from the USGS (U.S. Geological 
Survey, 2025b) indicates that Peru (not China) was the leading 
producer of arsenic. Even though arsenic remains important 
for its use in gallium arsenide wafers, a greater concern in 
that supply chain is China’s dominance in primary gallium 
production (Nassar and others, 2024).

As with the previous LCM assessment, there were 
insufficient data to quantitatively evaluate the risks for 
cesium, rubidium, and scandium. Although they have limited 
commercial applications, the United States has continued to 
be completely import reliant for all three mineral commodities 
(U.S. Geological Survey, 2025a). Moreover, scandium is 
specifically called out for export restriction by China’s 
MOFCOM (Ministry of Commerce of the People’s Republic 
of China, 2025b). There was insufficient justification for 
changing their status on the LCM, but future assessments 
could strive to quantitively assess their risk.

Conclusions
The results of the economic effects assessment and 

the SPOF criteria recommend the addition of six mineral 
commodities (in descending risk order, potash, silicon, copper, 
silver, rhenium, and lead) to the LCM and the removal of two 
mineral commodities (arsenic and tellurium) from the LCM. 

These recommendations are based on a statistical approach 
that classifies the probability-weighted economic effects into 
specific quantitative intervals. In determining the final LCM 
or in using the results of this methodology, decision makers 
may wish to consider other thresholds based on a specific 
risk tolerance, examine other risks (for example, the potential 
for supply disruptions from natural hazards [Jaiswal and 
others, 2024]), or address other considerations (for example, 
future demand expectations or the strategic importance of 
certain industries beyond economic valuation). Moreover, 
although defense-related industries are captured in the IO 
tables, consequences to the national security of the United 
States beyond economic effects are not directly factored into 
this analysis but may be addressed in the final LCM through 
consultation with the heads of other relevant executive 
departments and agencies as indicated by the Energy Act 
of 2020. Additionally, postponing the removal of mineral 
commodities may provide sufficient time for current policies 
to achieve their intended effects. For example, the Secretary 
of the Interior may decide to remove a mineral commodity 
now or wait to see if it is again recommended for removal in 
the next cycle. The assessment of risk exists on a continuum 
and this may influence decisions for mineral commodities 
near thresholds of evaluation. Mineral commodities with the 
highest probability-weighted net decreases in U.S. GDP may 
warrant closer evaluation and prompt greater attention from 
policymakers and other users of this information than those 
with low or negative probability-weighted net decreases 
in U.S. GDP. Several of the mineral commodities with the 
highest estimated risk have not only received attention but 
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Table 4.  Overview of mineral commodity assessment, ranking, and categorization for inclusion on the draft List of Critical Minerals 
(LCM) in 2025.

[Mineral commodities are listed in order of overall probability-weighted net decrease in U.S. gross domestic product (GDP). Mineral commodities that were not evaluated 
using the quantitative assessment were not ranked (ranking represented by a dash, —) and are ordered alphabetically after those ranked. Results are in current (2023) U.S. 
dollars and were rounded to the nearest million U.S. dollars; may not add to totals shown. Statistical risk categories were determined based on the probability-weighted net 
decreases in U.S. GDP (in millions of U.S. dollars) in rounded intervals, as follows: high, >206; elevated, >22 to 206; moderate, >2 to 22; limited, >0.06 to 2; negligible, 0 to 
0.06; negative, <0. A mineral commodity was recommended for inclusion on the updated LCM if the probability-weighted net decrease in U.S. GDP decline was determined 
to be at or above the “moderate” risk category in any process of the supply chain (or chemical form) or if the mineral commodity had a single point of failure (SPOF) in the 
domestic supply chain. Probability-weighted net decrease values and their corresponding risk categories are shaded according to their risk category classification: high to 
limited are shaded in progressively lighter shades of orange; negligible are white; and negative are blue. Mineral commodity forms and supply chain processes not previously 
assessed separately are marked with an asterisk in the final column]

Risk 
ranking

Mineral commodity

Probability-weighted 
net decrease in 

U.S. GDP
(millions of U.S. 

dollars)

Statistical risk 
category

Recommended 
for inclusion?

Basis for recommendation
On previous LCM (and basis for 

previous recommendation)?

1 Samarium 4,498 High Yes Quantitative assessment Yes (quantitative assessment)

2 Rhodium 2,752 High Yes Quantitative assessment Yes (quantitative assessment)

3 Lutetium 2,059 High Yes Quantitative assessment Yes (qualitative evaluation)

4 Terbium 1,809 High Yes Quantitative assessment Yes (qualitative evaluation)

5 Dysprosium 1,624 High Yes Quantitative assessment Yes (quantitative assessment)

6 Gallium 1,419 High Yes Quantitative assessment Yes (quantitative assessment)

7 Germanium 814 High Yes Quantitative assessment Yes (quantitative assessment)

8 Gadolinium 758 High Yes Quantitative assessment Yes (qualitative evaluation)

9 Tungsten 544 High Yes Quantitative assessment Yes (quantitative assessment)

10 Niobium 394 High Yes Quantitative assessment Yes (quantitative assessment)

11 Magnesium metal 303 High Yes Quantitative assessment Yes (quantitative assessment)*

12 Yttrium 295 High Yes Quantitative assessment Yes (quantitative assessment)

13 Potash 287 High Yes Quantitative assessment No

14 Hafnium 206 Elevated Yes Quantitative assessment Yes (quantitative assessment)

15 Aluminum 201 Elevated Yes Quantitative assessment Yes (quantitative assessment)

16 Thulium 180 Elevated Yes Quantitative assessment Yes (qualitative evaluation)

17 Neodymium 154 Elevated Yes Quantitative assessment Yes (quantitative assessment)

18 Silicon ferroalloys 140 Elevated Yes Quantitative assessment Not previously assessed

19 Antimony 131 Elevated Yes Quantitative assessment Yes (quantitative assessment)

20 Barite 104 Elevated Yes Quantitative assessment Yes (quantitative assessment)

21 Synthetic graphite 100 Elevated Yes Quantitative assessment Yes (quantitative assessment)

22 Indium 96 Elevated Yes Quantitative assessment Yes (quantitative assessment)

23 Vanadium 92 Elevated Yes Quantitative assessment Yes (quantitative assessment)

24 Palladium 85 Elevated Yes Quantitative assessment Yes (quantitative assessment)

25 Manganese alloys 77 Elevated Yes Quantitative assessment Yes (quantitative assessment)*

26 Lanthanum 74 Elevated Yes Quantitative assessment Yes (quantitative assessment)

27 Praseodymium 66 Elevated Yes Quantitative assessment Yes (quantitative assessment)

28 Titanium ferroalloys 65 Elevated Yes Quantitative assessment Yes (quantitative assessment)*

29 Copper, refined 56 Elevated Yes Quantitative assessment No

30 Platinum 54 Elevated Yes Quantitative assessment Yes (quantitative assessment)

31 Ruthenium 54 Elevated Yes Quantitative assessment Yes (quantitative assessment)

32 Zinc, smelted 51 Elevated Yes Quantitative assessment Yes

33 Iridium 48 Elevated Yes Quantitative assessment Yes (quantitative assessment)

34 Cobalt chemicals 47 Elevated Yes Quantitative assessment Yes (quantitative assessment)*

35 Erbium 43 Elevated Yes Quantitative assessment Yes (qualitative evaluation)

36 Chromium metal 36 Elevated Yes Quantitative assessment Yes (quantitative assessment)*
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Table 4.  Overview of mineral commodity assessment, ranking, and categorization for inclusion on the draft List of Critical Minerals 
(LCM) in 2025.—Continued

[Mineral commodities are listed in order of overall probability-weighted net decrease in U.S. gross domestic product (GDP). Mineral commodities that were not evaluated 
using the quantitative assessment were not ranked (ranking represented by a dash, —) and are ordered alphabetically after those ranked. Results are in current (2023) U.S. 
dollars and were rounded to the nearest million U.S. dollars; may not add to totals shown. Statistical risk categories were determined based on the probability-weighted net 
decreases in U.S. GDP (in millions of U.S. dollars) in rounded intervals, as follows: high, >206; elevated, >22 to 206; moderate, >2 to 22; limited, >0.06 to 2; negligible, 0 to 
0.06; negative, <0. A mineral commodity was recommended for inclusion on the updated LCM if the probability-weighted net decrease in U.S. GDP decline was determined 
to be at or above the “moderate” risk category in any process of the supply chain (or chemical form) or if the mineral commodity had a single point of failure (SPOF) in the 
domestic supply chain. Probability-weighted net decrease values and their corresponding risk categories are shaded according to their risk category classification: high to 
limited are shaded in progressively lighter shades of orange; negligible are white; and negative are blue. Mineral commodity forms and supply chain processes not previously 
assessed separately are marked with an asterisk in the final column]

Risk 
ranking

Mineral commodity

Probability-weighted 
net decrease in 

U.S. GDP
(millions of U.S. 

dollars)

Statistical risk 
category

Recommended 
for inclusion?

Basis for recommendation
On previous LCM (and basis for 

previous recommendation)?

37 Silver 36 Elevated Yes Quantitative assessment No

38 Natural graphite 34 Elevated Yes Quantitative assessment Yes (quantitative assessment)

39 Tin 33 Elevated Yes Quantitative assessment Yes (quantitative assessment)

40 Bismuth 32 Elevated Yes Quantitative assessment Yes (quantitative assessment)

41 Manganese sulfate (high 
purity)

29 Elevated Yes Quantitative assessment Yes (quantitative assessment)*

42 Magnesium compounds 28 Elevated Yes Quantitative assessment Yes (quantitative assessment)*

43 Titanium sponge 27 Elevated Yes Quantitative assessment Yes (quantitative assessment)*

44 Nickel, primary refined 22 Moderate Yes Quantitative assessment Yes (SPOF)

45 Tantalum 18 Moderate Yes Quantitative assessment Yes (quantitative assessment)

46 Holmium 15 Moderate Yes Quantitative assessment Yes (qualitative evaluation)

47 Fluorspar, acidspar 14 Moderate Yes Quantitative assessment Yes (quantitative assessment)*

48 Lithium 14 Moderate Yes Quantitative assessment Yes (quantitative assessment)

49 Titanium pigment 14 Moderate Yes Quantitative assessment Yes (quantitative assessment)*

50 Rhenium 12 Moderate Yes Quantitative assessment No

51 Titanium mineral concen-
trates

10 Moderate Yes Quantitative assessment Yes (quantitative assessment)

52 Cerium 9 Moderate Yes Quantitative assessment Yes (quantitative assessment)

53 Manganese metal 9 Moderate Yes Quantitative assessment Yes (quantitative assessment)*

54 Lead 7 Moderate Yes Quantitative assessment No

55 Titanium metal 7 Moderate Yes Quantitative assessment Yes (quantitative assessment)*

56 Chromium ferroalloys 5 Moderate Yes Quantitative assessment Yes (quantitative assessment)*

57 Beryllium 4 Moderate Yes Quantitative assessment Yes (SPOF)

58 Europium 3 Moderate Yes Quantitative assessment Yes (qualitative evaluation)

59 Ytterbium 3 Moderate Yes Quantitative assessment Yes (qualitative evaluation)

60 Chromium chemicals 2 Limited Yes Assessment of other supply 
chain process or form

Yes (quantitative assessment)*

61 Arsenic 2 Limited No Not applicable Yes (quantitative assessment)

62 Phosphates 1 Limited No Not applicable No

63 Selenium 1 Limited No Not applicable No

64 Zirconium 1 Limited Yes SPOF Yes (SPOF)

65 Cobalt metal 0 Limited Yes Assessment of other supply 
chain process or form

Yes (quantitative assessment)*

66 Mica 0 Limited No Not applicable No

67 Manganese dioxide 0 Limited Yes Assessment of other supply 
chain process or form

Yes (quantitative assessment)*
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Table 4.  Overview of mineral commodity assessment, ranking, and categorization for inclusion on the draft List of Critical Minerals 
(LCM) in 2025.—Continued

[Mineral commodities are listed in order of overall probability-weighted net decrease in U.S. gross domestic product (GDP). Mineral commodities that were not evaluated 
using the quantitative assessment were not ranked (ranking represented by a dash, —) and are ordered alphabetically after those ranked. Results are in current (2023) U.S. 
dollars and were rounded to the nearest million U.S. dollars; may not add to totals shown. Statistical risk categories were determined based on the probability-weighted net 
decreases in U.S. GDP (in millions of U.S. dollars) in rounded intervals, as follows: high, >206; elevated, >22 to 206; moderate, >2 to 22; limited, >0.06 to 2; negligible, 0 to 
0.06; negative, <0. A mineral commodity was recommended for inclusion on the updated LCM if the probability-weighted net decrease in U.S. GDP decline was determined 
to be at or above the “moderate” risk category in any process of the supply chain (or chemical form) or if the mineral commodity had a single point of failure (SPOF) in the 
domestic supply chain. Probability-weighted net decrease values and their corresponding risk categories are shaded according to their risk category classification: high to 
limited are shaded in progressively lighter shades of orange; negligible are white; and negative are blue. Mineral commodity forms and supply chain processes not previously 
assessed separately are marked with an asterisk in the final column]

Risk 
ranking

Mineral commodity

Probability-weighted 
net decrease in 

U.S. GDP
(millions of U.S. 

dollars)

Statistical risk 
category

Recommended 
for inclusion?

Basis for recommendation
On previous LCM (and basis for 

previous recommendation)?

68 Alumina 0 Limited Yes Assessment of other supply 
chain process or form

Yes (quantitative assessment)

69 Chromite 0 Limited Yes Assessment of other supply 
chain process or form

Yes (quantitative assessment)*

70 Bauxite 0 Negligible Yes Assessment of other supply 
chain process or form

Yes (quantitative assessment)

71 Feldspar 0 Negligible No Not applicable No

72 Manganese ore 0 Negligible Yes Assessment of other supply 
chain process or form

Yes (quantitative assessment)*

73 Strontium 0 Negligible No Not applicable No

74 Fluorspar, metspar 0 Negligible Yes Assessment of other supply 
chain process or form

Yes (quantitative assessment)*

75 Cadmium 0 Negligible No Not applicable No

76 Tellurium 0 Negligible No Not applicable Yes (quantitative assessment)

77 Nickel, mined −0 Negative Yes Assessment of other supply 
chain process or form

Yes (SPOF)

78 Copper, mined −0 Negative Yes Assessment of other supply 
chain process or form

No

79 Zinc, mined −0 Negative Yes Assessment of other supply 
chain process or form

Yes (quantitative assessment)

80 Iron ore −0 Negative No Not applicable No

81 Helium −1 Negative No Not applicable No

82 Silicon metal −2 Negative Yes Assessment of other supply 
chain process or form

Not previously assessed

83 Molybdenum −3 Negative No Not applicable No

84 Gold −33 Negative No Not applicable No

— Cesium Not evaluated 
quantitatively

Not applicable Yes Qualitative evaluation Yes (qualitative evaluation)

— Rubidium Not evaluated 
quantitatively

Not applicable Yes Qualitative evaluation Yes (qualitative evaluation)

— Scandium Not evaluated 
quantitatively

Not applicable Yes Qualitative evaluation Yes (qualitative evaluation)
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also action by the U.S. Government and others. For example, 
earlier this year, an Australian company’s facility in Malaysia 
announced plans to expand its heavy rare earth separation 
circuit to produce dysprosium, holmium, and terbium 
concentrate (Govind, 2025) and has plans to build a plant with 
similar capabilities in the United States through Presidential 
directive under Defense Production Act Title III (U.S. 
Department of Defense, 2021). Additionally, a U.S. producer 
recently announced that it has entered a partnership with the 
U.S. Department of Defense to accelerate its U.S. rare earth 
mine-to-magnet supply chain (MP Materials Corp., 2025). 
These recent announcements are part of a years-long effort 
on the part of the U.S. Government and other governments 
around the world aimed at reducing the risks associated 
with rare earths and other critical mineral commodities 
(International Energy Agency, 2025).

By performing an economic effects assessment, the 
results of this analysis can be used to provide a direct 
quantitative comparison of mineral commodities against 
each other and also to other risks and priorities. These results 
also allow for the performance of cost-benefit analyses of 
various risk mitigation strategies (for example, maintaining 
a stockpile, securing trade agreements, developing substitute 
materials, or increasing domestic primary or secondary 
production [Nassar and others, 2020]). Policymakers 
may, for example, consider whether the annualized costs 
of a specific risk mitigation strategy are determined to be 
greater or less than the expected risks noted here as part of 
their decision-making process. Moreover, it might not be 
cost-effective to address all the mineral commodities that 
are on the LCM. For example, europium and ytterbium 
are both just above the selected statistical threshold with 
probability-weighted net decreases in U.S. GDP of $3.5 
million and $2.6 million, respectively. Neither europium 
nor ytterbium were evaluated quantitatively in the last 
LCM assessment. Instead, their assessment was based on a 
qualitative evaluation. Although supply chains of both rare 
earth elements are still dominated by China, their limited use 
in the United States reduces the potential economic impact of 
any expected trade disruption. Europium’s use in phosphors 
for lighting and displays, for example, has decreased notably 
over the past decade (Wang and others, 2020). It may therefore 
not be cost-effective to focus risk mitigation efforts on these 
mineral commodities given that the expected economic effects 
are not very high. In interpreting the results, note that the 
probability-weighted net decreases in U.S. GDP are not the 
same as what the effects would be if a specific event were to 
occur. Moreover, the effects of prolonged mineral commodity 
trade restrictions are not captured in the 1-year-long scenarios 
of this analysis.

As noted in the previous LCM assessment (Nassar and 
Fortier, 2021), no single analysis can alone capture all the 
intricacies and nuances of the complex global supply chains 
of these mineral commodities. Moreover, data limitations, 
especially on the consumption of certain mineral commodities 
by application and industry, introduce uncertainty to the 

analysis that is difficult to quantify. Additionally, the results 
reflect the assumptions and simplifications made in both the 
scenarios and the models—some of which may not hold. For 
example, the extraterritorial enforcement of export restrictions 
is already reportedly being circumvented for some mineral 
commodities, like antimony, on which China has placed 
export restrictions (Parodi and others, 2025). Furthermore, 
scenario probabilities were estimated using machine-learning 
classifiers with data on prior official Government policies 
associated with export restrictions that cannot perfectly predict 
future actions (Ryter and Nassar, 2025). Other simplifications 
(for example, the streamlined IO table expansion approach) 
and assumptions (for example, the use of constant price 
elasticities) may affect the results in ways that would be 
difficult to anticipate. Nevertheless, the results presented in 
this report provide several notable improvements in terms of 
both methods (for example, the use of economic models) and 
scope (for example, the inclusion of several additional mineral 
commodity forms) compared with previous assessments. 
Moreover, although the analysis presented here shares 
a similar conceptual framework with the previous LCM 
assessment (Nassar and Fortier, 2021), it did not directly use 
any of the same indicators or methods. For example, neither 
the world production concentration nor the U.S. net import 
reliance indicators of the previous assessment were direct 
inputs in this analysis. Despite the methodological differences, 
the results of the two assessments largely overlap, which 
may provide a certain level of reassurance in the conclusions. 
While retaining the same conceptual framework, future work 
could continue to improve the analysis by collecting more 
comprehensive data, addressing model simplifications and 
assumptions, and expanding the scope to include other mineral 
commodities and scenarios.
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